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ABSTRACT
Modeling hydrometeorological extremes in Alpine catchments
Theo Voulgaridis

Uncertainties with a modeling framework consisting of a weather generator, two precipi-
tation disaggregation models and the hydrological HBV model was assessed with respect
to hydrometeorological extremes in Tyrol, Austria. Extreme precipitation events are ex-
pected to increase in intensity and frequency in the Alps during a warmer climate. The
Alpine regions may be particularly vulnerable to such changes in climate where many
floods in Europe occurred during recent years and caused major damage and loss of life.

Weather generators typically provide time series at daily resolution. Different disaggre-
gation methods have therefore been proposed and successfully tested to increase temporal
resolution in precipitation. This is essential since flood peaks may be maintained for as
little as minutes. Here, the non-parametric method of fragments was tested and compared
with the multiplicative microcanonical cascade model with uniform splitting on the repro-
duction of precipitation extremes. It is also demonstrated that the method of fragments
model can be transformed to disaggregate temperature with slight changes in the model
structure. Preliminary test results show that the simulation of discharge peaks can be im-
proved by disaggregating temperature in comparison with using daily averages as input in
the HBV model.

Test results show that precipitation extremes were simulated within confidence bounds for
Kelchsauer and Gurglbach when using historical observations as input. These two catch-
ments had longer records of data available in comparison with Ruetz where the majority
of simulated precipitation extremes were found outside confidence ranges. This indicates
that the model is data driven. Synthetic data series were constructed with the weather
generator from historical data and disaggregated with the two disaggregation models. The
differences between the models were bigger for Ruetz where less observed data was avail-
able. The method of fragments simulates extremes with closest resemblance to extremes.
This is also true for the reproduction of wet spells and simulated variance.

To account for parameter uncertainty in the HBVmodel, it is highly motivated to simulate
discharge with different but suitable parameter sets to account for equifinality. However,
the large amount of data produced when disaggregating the weather generated time series
transcended the data capacity of the HBV model and made it crash. Other uncertainties
related to the framework are the use of theoretical probability distributions in the weather
generator and the dependence of high resolution data for the disaggregation model. De-
spite these uncertainties, the framework is closer to a physical understanding of the causes
of floods than the uncertain frequency analysis method. The framework is also applicable
to land-use and climate change studies.
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REFERAT
Modellering av hydrometeorologiska extremvärden i alpina avrinningsområden
Theo Voulgaridis

Osäkerhetermed ett modelleringsramverk bestående av en vädergenerator, två disaggrege-
ringsmodeller för nederbörd och den hydrologiskaHBV-modellen utvärderadesmed avsee-
nde på hydrometeorologiska extremvärden i Tirol, Österrike. Extrem nederbörd förväntas
öka i intensitet och frekvens i Alperna under ett varmare klimat. Alperna kan vara särskilt
känsligt för sådana förändringar där många av de senaste översvämningarna i Europa har
inträffat och resulterat i stora materiella skador och dödsfall.

Vädergeneratorer skapar typiskt nederbördsdata med daglig upplösning. Flödestoppar vid
översvämningar utvecklas ofta på tidskalor som är betydligt mindre varav nedskalning
av nederbördsdata är nödvändigt. Den här uppsatsen jämför fragmentsmetoden med den
multiplikativa mikrokanoniska modellen med likformig delning med avseende på simu-
lering av extrem nederbörd. Eftersom dagliga medeltemperaturer hade en icke försumbar
påverkan på flödestoppar i HBV-modellen, transformerades fragmentsmetoden med några
förändringar för att också disaggregera temperatur. Preliminära resultat visade att disag-
gregerade temperaturserier förbättrade modelleringen av flödestoppar i HBV-modellen.

Resultaten från studien visar att fragmentsmetoden reproducerar extrem nederbörd inom
beräknade konfidensintervall för de två områdena med mest tillgängliga historiska data,
Kelchsauer och Gurglbach. Resultaten var sämre för Ruetz där mindre data fanns till
förfogande, vilket indikerar att fragmentsmetoden är databegränsad. Med vädergenera-
torn skapades väderserier från historisk daglig nederbördsdata. Dessa disaggregerades
med hjälp av fragmentsmodellen och den mikrokanoniska modellen. Skillnaderna mel-
lan modellerna var störst för avrinningsområdet Ruetz. fragmentsmodellen simulerade
extremvärden, varians och antal dagar med nederbörd med störst likhet till historiska ob-
servationer.

Då flera kombinationer av parametrar i HBV-modellen kan ge samma fel med avseende på
en kriteriefunktion, är det motiverat att simulera avrinning med flera olika men lämpliga
parameteruppsättningar. Den stora datamängd som disaggregerade 100-årsserier på tim-
lig upplösning gav upphov till gjorde att HBV-modellens datakapacitet överskreds. Vi-
dare så har flera osäkerheter uppmärksammats med modelleringsramverket. Bland an-
nat använder vädergeneratorn teoretiska sannolikhetsfördelningar för att modellera neder-
börd dessutom är effektiviteten av disaggregeringsmodellerna begränsade av högupplösta
tidsserier. Modelleringsförfarandet är dock närmare en fysisk förståelse för orsakerna
bakom översvämningar i jämförelse med frekvensanalys som har kritiserats för att vara
en osäker metod. Dessutom möjliggör kombinationen av modellerna studier av förän-
dringar i klimat och markanvändning.

Nyckelord: vädergenerator, hydrologisk modellering, HBV-modellen
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PREFACE
The seed for this thesis was planted when Kaycee, Kenechukwu Okoli, at the Department
of Earth Sciences, had a lecture on uncertainties related to the estimation of flood flows.
The criticism was not new, references for this thesis goes back to the 1950s. The central
question was, how can one use distribution fitting to estimate design floods, when for the
most part, the part of the distribution we are interested in (the tail), is far away from where
the observations provide information on the distribution profile. Kaycee ended the lec-
ture by calling for more research on the physical understanding of flood flows. This was
a research question that I wanted to engage in. If we are to liberate hydrology from the
uncertainties related to frequency analysis, what should we replace it with?

This is what I have tried to figure out during this 30 credits master thesis course that will
be the icing on the cake, the end of a five-year long quest for the pursue of a master of
science degree in environmental and water engineering. I hope you will enjoy reading my
thesis.

This thesis was made possible thanks to the academic supervisor Giuliano Di Baldassarre,
my supervisor Korbinian Breinl, Kenechukwu Okoli , Eduardo Reynolds and Jan Seibert
(Department of Earth Sciences, Program of Air, Water and Landscape Sciences; Hydrol-
ogy) whom all assisted and gave me good advice and assistance to improve my thesis.
Kenechukwu also assisted with an Matlab algorithm to fit theorethical probability distri-
butions to historic discharge observations with the method of maximum likelihood (Okoli
2017, personal communication).

A special thanks to Korbinian Breinl, my supervisor, who provided raw weather and dis-
charge data (at hourly resolution) and weather generated realizations (at daily resolution)
extrapolated from historic observations as well as the disaggregated precipitation time se-
ries (at hourly resolution) simulated with the microcanonical model with uniform splitting
(Breinl 2017, personal communication). He also gave me good assistance and his email
reply was never more than a few minutes away. Thanks for the cooperation and thanks
for giving me valuable insights on the constituents of a researcher’s everyday life.

Theo Voulgaridis
Uppsala August 2017
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POPULÄRVETENSKAPLIG SAMMANFATTNING
Modellering av hydrometeorologiska extremvärden i alpina avrinningsområden
Theo Voulgaridis

Varje år utsätts ett stort antal människor i världen för översvämningar med dödlighet och
stora ekonomiska skador som följd. Även ekosystem är utsatta, där risker för permanenta
skador i habitat eller artmiljöer och mark kan bli den logiska påföljden. Många gånger
orsakas översvämningar som en följd av komplexa och invecklade samband mellan ex-
empelvis nederbördsintensitet, grundvattennivåer och rådande markförhållanden. Det är
därför riskfyllt att diskutera enskilda faktorer utan ett helhetsperspektiv vid behandling av
översvämningsproblematik.

En ytterligare komplicerande faktor är att klimatförändringar på många håll i världen
förutspås leda till skiften i nederbördsmönster, atmosfäriska förhållanden och hydrolo-
giska förlopp. Vattenånga kan exempelvis hålla mer vatten under varmare tillstånd, nå-
got som förenklat förutspås leda till både mer och intensivare nederbördsmönster. I Eu-
ropa kan de Alpina områdena vara särskilt sårbara. Där har många av de största samtida
översvämningarna skett och åsamkat både dödsfall och stora materiella skador. Den mest
ödesdigra översvämningen skedde 2002 i Österrike, Italien och Tyskland och resulterade
i skador motsvarande 27 miljarder US $. Många anledningar bidrar till att göra de alpina
områdena sårbara, särskilda atmosfäriska cirkulationsmönster sägs vara en huvudorsak.
Områden som är belägna på en högre höjd är också exponerade för större volymer och
mer frekvent nederbörd. Andra bidragande faktorer är exempelvis smältande snömängder,
mindre vegetationsmängder och markdjup vilket minskar fömågan att bromsa, det vill
säga, uppehålla vatten. Extrem nederbörd förväntas öka under alla årstider för de flesta
Alpina områdena under ett varmare klimat. Ett tvågradig temperaturökning av klimatet
förutspås leda till att en extrem nederbördsmängd som tidigare förväntades ske ungefär en
gång var 100e år (i medeltal), kan komma att återkomma vart 20e år.

Trots att bakgrunden till en viss översvämning kan vara komplex, är det relativt vanligt att
bara använda flödesdata som grund för en viss extremflödesprognos, genom en så kallad
frekvensanalys. Då extrema föruteelser sällan inträffar, finns det ofta få representativa ob-
servationer av sådana händelser. Problemet med frekvensanalys är därför att prognosen
baseras på relativt lite information om det som eftersöks, nämligen extremvärden. Meto-
den ger inte heller någon direkt information om vad som kan ha orsakat extremflödet
eller översvämningen. Kritik av frekvensanalys har därför länge varit en uppmärksam-
mad fråga inom den hydrologiska forskningsgemenskapen. Målet med metoden är att
bestämma ett så kallat dimensionerande flöde, ett hypotetiskt maxflöde som exempelvis
kan användas för att dimensionera en damm. En annan utmaning med metoden är att det
ofta inte finns flödesdata att tillgå och att det inte går att ta hänsyn till förändrade neder-
bördsmönster omman vill undersöka vad en sådan förändring skulle betyda för hydrologin
i området.

Istället efterfrågas därför metoder som ärmer realistiska och närmre avbildningar av natur-
liga och fysiska fenomen. Sådana modeller finns där förenklade matematiska ekvationer
syftar till att avbilda fysikaliska processer. Sådana modeller kallas konceptuella. I så-
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dana modeller går det att mata in väderdata så som temperatur och nederbörd. Beroende
av värdet på olika parametrar i ekvationerna, parametrar som motsvarar olika hydrolo-
giska egenskaper, kommer olika indata resultera i olika utflöden från modellen. Förde-
len med ett sådant tillvägagångssätt är att förändringar i markanvändning och klimat kan
simuleras. Det kan göras genom att koppla ihop modeller som genererar väderdata, så
kallade vädergeneratorer med den konceptuella modellen. Vädergeneratorer har påvisats
kunna återskapa nederbördsmängder- och mönster väl. En utmaning med vädergenerator-
erna är att det ofta är eftersträvansvärt att skapa konstgjort väder med daglig upplösning
trots att intensiva flödestoppar kan genereras under tidsintervall som är mycket kortare.
Det är därför nödvändigt att dissaggregera, omfördela dagliga regnmängder till mindre
tidsskalor för att bättre kunna simulera extremflöden. Flera publicerade verk och lyck-
ade försök har gjorts med modeller som ökar upplösningen i nederbördsdata från dagliga
värden till timvärden. Genom att koppla ihop vädergeneratorer, disaggregeringsmodeller
och hydrologiska modeller är det möjligt att ta sig an många av de utmaningar som har
presenterats ovan.

Det här arbetet har fokuserat på att undersöka osäkerheter med ett sådant modelleringsram-
verk, där HBV-modellen använts som hydrologisk modell. Osäkerheter mellan två olika
disaggregeringsmodeller (fragmentsmodellen och en mikrokanonisk) har också under-
sökts. Resultaten av de ovan nämnda försöken ställs sedan i förhållande till konventionell
frekvensanalys som också testades under arbetets gång. Mätdata som använts i studien
kommer från de tre Alpina avrinningsområdena Ruetz, Kelchsauer och Gurgblach belägna
i Tirol, Österrike.

Det första som kunde bekräftas var att frekvensanalys gav väldigt osäkra prognoser för de
undersökta områdena. Ett så kallat dimensionerande flöde för en händelse som i medeltal
förväntas återkomma med 50-årsintervall, varierade mellan 100-300 m3s−1. Med ett så-
dant resultat är det både svårt och osäkert att komma med rådgivning om flödesdimen-
sionering. Fragmentsmodellen återskapade extremnederbörd på timskala (inom de osäk-
erhetsmarginaler som är vetenskapligt accepterade att använda) för Kelchsauer och Gur-
glbach. För Ruetz, där det fanns mindre nederbördsdata att tillgå, var resultaten sämre och
majoriteten av de simulerade datapunkterna hamnade strax utanför marginalerna. HBV-
modellen förbereddes genom att kalibrera, det vill säga, försöka sätta värden på de olika
parametrarna i ekvationerna som beskriver avrinningsområdet. I valideringen, förfaran-
det där det undersöks hur väl modellen är kalibrerad för att återskapa observerade mätdata
kunde det konstateras att simuleringar av extremvärden ofta var skiljt från de observerade.
Däremot visade ekvationen som mäter modelleffektivitet att modellen reproducerade vär-
den med accepterade skillnader. En osäkerhetsanalys för HBV-modellen tydde också på
att parametrarna för studieplatserna var väldigt odefinierade, många olika parameterupp-
sättningar gav samma värde på modelleffektivitet.

Eftersom vädergeneratorn skapar både nederbörd och temperatur på daglig basis, jäm-
fördes resultat mellan simuleringar från observerade temperaturer med flödessimuleringar
där temperaturmedelvärden istället användes. Detta ansågs ha en icke försumbar påverkan
på maxflödena så disaggregering av temperatur var också nödvändig. Temperaturmod-
ellen konstruerades utifrån fragmentsmodellen. Det var möjligt eftersom temperatur och
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nederbörd är relaterade till varandra.Resultat från temperaturmodellen indikerade att dis-
aggregerad temperaturdata simulerade flöde-stoppar med större likhet till observerade
flödestoppar i jämförelse med användandet av temperaturmedelvärden.

100 år av nederbördsdata med daglig upplösning användes sedan för att jämföra disag-
gregeringsmodellerna. fragmentsmodellen producerade resultat med större likhet till his-
toriska observationer för alla avrinningsområden i jämförelse med den mikrokanoniska
modellen. Modellerna var mer olika för Ruetz, där mindre data fanns att tillgå. Vidare
disaggregerades väderdata från vädergeneratorn för att testa hela modelleringsramverket.
Eftersom disaggregeringen leder till stora datamängder är det ofrånkomligt att dela upp
datamängder i mindre delar om simuleringar med flera parameterkombinationer ska göras.
Det beror på att HBV-modellens nuvarande struktur inte kan hantera så storamängder data.

Flera körningar är rekommenderat eftersom osäkerheten för de olika parametrarna som
kalibrerats fram till HBV-modellen var stora. Frekvensanalys i den här studien bekräftas
vara en väldigt osäker metod. Det ger inte heller någon information om vad som or-
sakat extremflödena. Vidare löser det inte problem med små datamängder och det går inte
att simulera förändringar i klimat och markanvändning. fragmentsmodellen återskapade
tidigare extremväder för Kelchsauer och Gurglbach. Resultaten visades vara beroende av
hur mycket observerade högupplösta data som fanns tillgängligt. Vidare simulerade frag-
mentsmodellen resultat som var närmare de observerade än den mikrokanoniska modellen
med vädergenererade data. fragmentsmodellen påvisades också kunna transformeras till
en nedskalningsmodell för temperatur.

Somhelhet finns detmånga osäkerheter kopplade till modelleringsramverket. Det är också
mer komplicerat än frekvensanalys. Trots osäkerheterna, är ramverket närmre en fysisk
förståelse för orsakerna bakom översvämningar än frekvenanalys. Modelleringsförfaran-
det möjliggör också studier av förändringar i klimat och markanvändning och kan vara en
lösning när datamängder är små och på för stora tidsskalor.
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1 INTRODUCTION
Understanding potential changes in precipitation patterns due to anthropogenic emissions
of greenhouse gases is central to constrain and improve projections of expected changes to
the global hydrological cycle. Many climate models predict that extreme rainfall events
will increase in frequency in an anthropogenic warmed climate (Allan & Soden, 2008;
Gobiet et al., 2014; Westra et al., 2013). These changes are controlled by interactions of
many thermodynamic processes. For example, warmer conditions increase the moisture
capacity of air, an important process that is expected to lead to more intense precipitation
in a warmer climate (Gobiet et al., 2014). It has also been suggested that changes in rain-
fall extremes might be underestimated by models (Allan & Soden, 2008). Mountainous
areas, as for example the Alpine regions in Europe, where many of the floods in Europe
during recent years occurred and caused major damage and loss of life, may be particu-
larly vulnerable to such changes (Baldassare & Ranzi, 2003; Gobiet et al., 2014). The
costliest flood affecting Europe and the Alpine countries Germany, Austria and Italy in
2002, resulted in material damages of approximately 27 billion US$ (inflation-adjusted)
(Kundzewicz et al., 2012).

Extreme precipitation is expected to increase in intensity in all seasons for most of the
Alpine regions. In relation to current conditions, this corresponds to a reduction of return
periods for floods. In fact, a two degree increase in temperature with a 10 % increase in
precipitation can transform a 100-year winter flood to a flood event with a return period
of 20 years (Gobiet et al., 2014). Furthermore, intensification of precipitation up to + 30%
during fall has been suggested for the northern Alps, equivalent to more than a halving of
return periods which may lead to more repeated and severe flooding. Winter and spring
floods are also projected to increase in magnitude and frequency in a warmer climate (Go-
biet et al., 2014).

Many factors contribute towards making the Alpine regions vulnerable (Weingartner et
al., 2003; Gobiet et al., 2014). Orographic mechanisms that extract ambient moisture are
one major reason causing heavy precipitation events in the Alps (Gobiet et al., 2014).
Moreover, higher areas have a greater total volume and more frequent rain than areas on
lower altitudes. Lower regions of mountains are especially prone to convective (uplift)
short term heavy precipitation. The soil depth typically declines with increasing altitude
leading to quicker hydrological responses. The vegetation growth in mountain areas is
limited to short periods resulting in reduced protection against erosion, minor interception
of precipitation and low evaporation rates. Furthermore, the gravitational influences from
higher slopes in the mountain regions are a determining factor for increased runoff genera-
tion and reduced retention times. Precipitation intensities in the European Alps have been
reported to amount up to 100 mm h−1 under present climate conditions (Weingartner et
al., 2003). It’s further reported that precipitation intensities of more than 70mm h−1 and
240mm d−1 has been reported to be quite common in the Alpine areas (Kobold & Brilly,
2006). The immense societal consequences that any shift in precipitation intensity or fre-
quency could result in, highlights the importance of this research area (Westra et al., 2013).

However, the physical processes that give rise to floods are complex and controlled by a
range of intricate interactions between variables such as snowmelt, precipitation regime,
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catchment characteristics and the current state of the catchment (Merz & Blöschl, 2003).
Despite this complexity, flood modeling is often limited to fitting a theoretical probability
distribution to a sample of observed discharge peaks (Merz&Blöschl, 2003; Moran, 1958;
Chow et al., 1988). These distributions are supposed to represent the cumulative effect
of all physical processes governing runoff generation (Merz & Blöschl, 2003; Chow et
al., 1988). Since the true distribution of the sample is unknown, it is of common practice
to guess the shape by constructing probability plots and histograms of the occurrences as
guidance (Kottegoda & Rosso, 2008). A consequence of this simplification is that this
methodology does not provide any information about the physical causes of the floods
and their relation to flood probabilities. In addition, data series may provide sufficient
knowledge about daily occurrences but not the extremes which are to be modeled. Since
the sample does not provide information on the shape of the tail and information on the
physical basis of the floods, extrapolation tends to perform poorly beyond the conditions
of the sample (Merz & Blöschl, 2003; Moran, 1958; Chow et al., 1988). In other words,
the projection of low frequent extremes may be highly uncertain.

In extent, fitting a suitable distribution for a given dataset might be difficult and this way
of modeling may be limited to reproduce only some of the desired properties in the ob-
served dataset. To circumvent such challenges, models that make fewer assumptions about
distributional and parametric properties need to be introduced. Such models may be re-
sampling models (Haberlandt et al., 2011) or conceptual models, which are a compromise
between black-box and more physically based models. One such conceptual model is the
precipitation-runoff HBV (Hydrologiska Byråns Vattenbalansavdelning) model which has
been widely used in research practices such as flood assessment (Seibert, 2012; Ding et
al., 2016; Breinl, 2016; Seibert, 2012; Bergström 1992). The HBV model was originally
introduced by Bergström (1976) and simulates discharge with precipitation, temperature
and estimates of monthly long-term potential evaporation rates as input. An advantage
of precipitation-runoff models like the HBV is that no assumptions on the distributional
properties of the dataset need to be made (Seibert, 2012). Other advantages, compared
to distributional fitting, are the models applicability to studies of changes in land use and
climate (Seibert, 1999a; Lindström et al., 1997).

However, modeling of low frequent events such as extreme floods, presumes a rigorous
calibration and validation process so that internal procedures are simulated correctly and
parameter values constrained. Most of the parameters, usually around 10-15, used in con-
ceptual models needs to be determined during calibration (Seibert, 2000). Many different
parameter sets may produce equally good results, something referred to as equifinality.
This motivates the use of different parameter groups to account for model uncertainty
(Beven & Freer, 2001).

Manual calibration is time consuming and potentially subjective. Therefore, automatic
multi- or single-criteria calibrations are often used as an alternative. The conceptual HBV
precipitation-runoff model allows for different automatic calibration procedures that can
be easily applied and evaluated (Seibert, 2012). However, even when using conceptual
models like HBV, one must often, as with the distributional fitting to a sample, extrapolate
beyond the probabilities that can be justified from the given observations. A difference
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between the two procedures is increased confidence in the validation procedure on the con-
ceptual model, since this is performed on an independent time interval (Seibert, 1999a).
Hydrological modeling, even when using conceptual models like HBV, is closer to under-
standing the physical processes of catchment hydrology (Lindström et al., 1997; Seibert,
1999a, 1999b, 2012) compared to distributional fitting (Merz & Blöschl 2003; Moran,
1958; Chow et al., 1988).

Long series of high-resolution precipitation data is a necessity to model and understand
the impact of specific floods (Müller & Haberlandt, 2015; Westra et al., 2012; Kobold &
Brilly, 2006). In fact, data at hourly resolution is often essential for flood design purposes
since flood peaks may be maintained for as little as hours or minutes (Pui et al., 2009;
Kobold & Brilly, 2006). High resolution data is particularly motivated since many of the
expected changes in precipitation patterns are predicted at sub-daily time intervals (Westra
et al., 2013). In contrast, available precipitation data series are often short, the resolution
inadequate and spatial coverage lower in relation to what is needed (Müller & Haberlandt,
2015; Westra et al., 2012). To overcome the issue of short time series, precipitation can
be synthetically generated using weather generators, providing long time series where ex-
tremes are better captured (Haberlandt et al., 2011; Breinl, 2016). Extending historical
records or to generate new ones have been helpful for hydrological design purposes (Pui
et al., 2009; Molnar & Burlando, 2005). Coupling weather generators with hydrological
modeling enables uncertainty and impact assessment on changing land use and climate
conditions (Bergström et al., 2001; Booij, 2005; Breinl, 2016).

Weather generators do however generally provide time series at daily resolution (Pui et al.,
2009; Breinl, 2016) which, as mentioned above, may be insufficient in flood assessment
(Pui et al., 2009; Kobold & Brilly, 2006). However, a main reason behind generating
daily weather data is the absence of continous long term precipitation data (Breinl et al.,
2015; Müller & Haberlandt, 2015; Westra et al., 2012).

Precipitation disaggregation has therefore been proposed and successfully tested to in-
crease resolution in precipitation data (Olsson, 1998; Güntner et al., 2001; Müller &
Haberlandt, 2015; Molnar & Burlando, 2005; Pui, et al., 2009, 2012). Disaggregation
of precipitation data has also been used in flood analysis (Pui, et al., 2009). However,
many of the mentioned studies (Olsson, 1998; Güntner et al., 2001; Müller & Haberlandt,
2015; Molnar & Burlando, 2005; Pui et al., 2009, 2012) have focused on the precipita-
tion reproducing properties and not the resulting runoff. Therefore, it is of high interest
to assess a modeling framework consisting of a weather generator, precipitation disag-
gregation models coupled with the hydrological HBV model as an alternative to estimate
design floods with conventional frequency analysis. The HBV model is computationally
inexpensive and thus allow for many runs and proper uncertainty analysis (Ding et al.,
2016; Breinl, 2016; Seibert, 2012; Bergström, 1992).
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1.1 OBJECTIVES
The objectives with this thesis were to investigate uncertainties with a modeling frame-
work to estimate design floods in relation to uncertainties with frequency analysis. The
framework consisted of a weather generator to extend historical records of precipitation
and temperature data, a disaggregation procedure to increase resolution in the syntheti-
cally generated weather data which then could be used as input in the hydrological HBV
model to estimate design floods in Alpine catchments. The framework was examined to
provide an alternative to conventional frequency analysis methodology where fitting dif-
ferent probability distributions to annual peak discharges with maximum likelihood or the
method of moments is the common practice. Another objective was to compare the output
of the disaggregation models and assess their uncertainties.

The specific objectives were:

• Use conventional frequency analysis to estimate design floods with return periods
of 20 and 50 years for the three study catchments and assess uncertainties with the
method

• Compute the method of fragments model for precipitation and temperature disag-
gregation and assess simulation results and uncertainties

• Couple weather generated temperature and precipitation data with the method of
fragments and the multiplicative microcanonical cascade model with uniform split-
ting and evaluate their simulation results and uncertainties

• Evaluate uncertainties with the modeling framework for estimating design floods

2 BACKGROUND AND THEORY
2.1 FREQUENCY ANALYSIS
Hydrologic systems are occasionally exposed to extreme events such as storms and floods.
The frequency of occurrence of a specific flood or storm is inversely related to the mag-
nitude of the event. An extreme event is, in comparison with more moderate events,
per definition something that occurs less frequent. The aim of frequency analysis is to
correlate certain events in hydrologic data with theoretical probability distributions. All
probability distributions are functions of random variables showing their probability of
occurrence (Chow et al., 1988). Fitting a theoretical probability distribution to a sample
of observed discharge peaks is a common engineering procedure (Haberlandt et al., 2011;
Merz & Blöschl, 2003). When doing so, one assumes that the hydrologic data is indepen-
dent, identically distributed and is produced by a rainfall storm systemwhich is considered
stochastic (partly deterministic and partly random), space-independent (the system is re-
garded as a single point or equally the variable does not change in relation to its position)
and time-independent (the hydrological events do not influence each other) (Chow et al.,
1988).

In order to not compromise these criteria, one needs to be careful when choosing data.
In practice that often means choosing the annual maximum peak flow at wanted resolu-
tion with the assumption that the discharge is independent from year to year (Chow et al.,
1988). If the highest annual discharge is drawn from a historical series at hourly resolution
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that means it is the largest of 8760 values. These values may therefore be located in the
extreme tail of their parent probability distribution (Chow et al., 1988).

Not surprisingly, the probability distribution of extremes may differ from the distribution
from which the extreme values were drawn. The distribution of extreme values has been
seen to converge to one out of three forms of asymptotic extreme value distribution types
referred to as Type I, II and III. Common asymptotic distributions used in hydrological
applications of extremes are The Extreme Value Type I (EV1) or Gumbel distribution, the
Log-Pearson Type III distribution which is the standard distribution for annual maximum
flows in the United States, Pearson Type III distribution and the General Extreme Value
(GEV) distribution which all of the other asymptotic distributions derive from. Another
common distribution used in flood design practices is the Lognormal distribution (Chow
et al., 1988).

The central limit theorem states that if a sequence of random variables Xi are distributed
independently and identically with mean µ and variance σ2, the sum of n random vari-
ables Y =

∑
Xi tends to follow the normal distribution with mean nµ and variance nσ2

as n becomes large regardless of the original distribution function ofX (Chow et al., 1988).

There are two commonly applied methods to fit a distribution to a sample of hydrolog-
ical data. The first method is called the method of moments and the other is called the
method of maximum likelihood. When fitting a distribution to a sample, all the original
information of the sample is compacted to the probability function and its associated pa-
rameters. Fitting a distribution to a sample of observations with the method of moments
can be done by calculating a frequency factor, Kt, to estimate a flood with return period
T . The degree of fit for a sample to a proposed distribution can be evaluated using a Chi-
square test (χ2) for example. A confidence level is then chosen for the null hypothesis
to determine if there is a significant relation between the fitted distribution and the data.
A more theoretically appropriate method for fitting a distribution to a sample, is however
the method of maximum likelihood. This is true in the sense that the method produces the
most efficient parameters, i.e. those which approximate the sample parameters with least
average difference (Chow et al., 1988).

2.2 HBV LIGHT
The HBV model is a widely used conceptual runoff model (Bergström, 1976, 2001; Seib-
ert, 2012; Breinl, 2016; Kobold & Brilly, 2006; Ding et al., 2016). The HBV model is
fast and straightforward in comparison to more complex, fully distributed physical hy-
drological models which come at a higher computational cost (Arnold et al., 1998). A
more complex model does not necessarily mean better modeling results (Das et al., 2008)
something that motivates the use of a conceptual model like the HBV. The HBV model
simulates discharge with rainfall, temperature and estimates of monthly long-term poten-
tial evaporation rates as input and has been used in many flood simulation studies (Ding
et al., 2016; Breinl, 2016; Seibert, 2012; Bergström, 1992). It is a semi-distributed model,
i.e., catchments can be separated into subcatchments as well as into different elevation
and vegetation zones. The model consists of different routines, which are a snow routine,
a soil routine and a response routine where runoff is computed from a function of water
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storage. The response routine is calculated at a specific location (lumped) in contrast to
the snow and soil routine where calculations are carried out for each different elevation
zone. (Seibert, 2012).

In a deterministic lumped model like the HBV, a given input with the same parameter
values always result in the same output, an output which is spatially averaged in a single
point in space without dimensions (Chow et al., 1988).

A straightforward an updated user-friendly version of the HBV model, HBV light, has
been developed at the University of Zürich and was used in this study (Seibert, 2012).

2.2.1 HBV Light calibration
Monte-Carlo simulations and the evolution based Genetic Algorithm and Powell opti-
mization (GAP) can be used in the HBV light version for automatic calibration (Seibert,
2012). The evolution-based generic algorithm mimics evolution by giving parameter sets
with satisfactory simulation more chances to generate new sets than those with poorer re-
sults. Multi-criteria calibration using many objective functions to access the efficiency
of the model has been seen to constrain parameter values (Seibert, 2000). However, the
values of different objective functions, which all judge the results of the parameter sets by
dissimilar criteria, are not directly comparable and therefore hard to combine. One way to
allow for comparison is to assign weights to the different objective functions in the model
and then combine these reconstructed functions into a so called fuzzy measure (Seibert,
1999).

Assigning weights can be done manually in the HBV light model before running the auto-
matic calibration. Finding weights that balance the objective functions so that the resulting
parameter ranges are constrained, may be complicated. The LindstromMeasure objective
function, which is available in the HBV light model version, is an empirically derived
model performance measure, which combines different objective functions into a fuzzy
value. The objective functions used in the LindstromMeasure are already weighted and
could therefore be used to constrain ranges of parameter values as well as to assess model
performance. The LindstromMeasure contains the coefficient of efficiency,Reff (1), orig-
inally developed by Nash & Sutcliffe (1970) and the volume error which is weighted to
0.1 in equation (2). Reff evaluates if the model is a better measure to estimate runoff in
comparison with a benchmark series, usually the mean (Seibert, 2001).

Reff = 1−
∑

(Qobs −Qsim)
2∑

(Qobs −Qobs)
2

(1)

LindstroemMeasure = Reff − 0.1
|
∑

(Qobs −Qsim)|∑
(Qobs)

(2)
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2.2.2 HBV model routines
The HBV model can be used on any temporal resolution, as long as the time interval, t,
remains constant. The form of precipitation is conditioned to temperature. If precipitation
falls when the temperature is below the temperature threshold value, TT (◦C), precpitation
is simulated to be snow and vice versa. When the temperature is below TT precipitation
is simulated as snow and multiplied with a snow correction factor, SFCF . This is done
to compensate for systematic errors in snowfall measurements and the “missing” evap-
oration from snowpack in the model. The melting of snow is calculated with a degree
day method (3). The snowpack can store a certain amount of meltwater. If this portion,
CWH , is not exceeded, meltwater is retained within the snowpack. CFMAX (mm ◦C−1

d−1) (3) is the degree day factor. Some of the meltwater refreezes within the snowpack, a
relationship governed by a refreezing factor, CFR, in equation 4 (Seibert, 1999).

melt = CFMAX(T (t)− TT ) (3)

refreezing = CFR · CFMAX(TT − T (t)) (4)

Melting water from snowmelt and precipitation (P ) are then divided into either the soil or
groundwater box conditional to the relationship of the content of water in the soil box, soil
moisture SM (mm) and the maximum water content FC (mm) (5). Actual evaporation
from the soil box depends on the ratio SM

FC
. If the ratio is bigger than LP , actual evapora-

tion equals potential evaporation while a linear reduction is used when the ratio is below
LP (6) (Seibert, 1999).

recharge

P (t)
=

(
SM(t)

FC

)BETA

(5)

Eact = Epot

(
SM(t)

FC · LP
, 1

)
(6)

The upper groundwater box, SUZ (mm), is first filled when precipitation or meltwater is
added to the groundwater box. The parameter PERC (mm d−1) describes the maximum
proportion of percolating water from the upper to the lower groundwater box SLZ (mm).
Evaporation and precipitation in lakes are conceptualized by adding or subtracting water
from the lower groundwater box. Runoff from the groundwater boxes depends onK0,K1

and K2 (d
−1) representing the outflow equations. It is optional whether one want to use

two or three of these linear equations. Runoff is calculated as the sum of the outflow equa-
tions depending on if SUZ is above the threshold value, UZL (mm), or not (7). A final
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transformation of the runoff is then done in the triangular weighting function (9) defined
by the parameterMAXBAS (h) to simulate discharge.

QGW (t) = K2 · SLZ +K1 · SUZ +K0max(SUZ − SLZ, 0) (7)

Qsim(t) =
MAXBAS∑

i=1

c(i)QGW (t− i+ 1) (8)

Where c(i) equals (9).∫ i

i−1

2

MAXBAS
−

∣∣∣∣u− MAXBAS

2

∣∣∣∣ 4

MAXBAS2
du (9)

By using deviations of the temperature T (t) from its long term-mean value, a correction
factor, CET the long-term mean potential evaporation,Epot,M , for a certain day of the year
can be corrected to the real value, Epot, of day t (◦C−1) (10).

Epot(t) = (1 + CET (T (t)− TM))Epot,M0 ≤ Epot(t) ≤ 2Epot,M (10)

Where 0 ≤ Epot(t) ≤ 2Epot,M .

To account for the differences in temperature and precipitation in relation to altitude,
PCALT (11) and TCALT (12) are used.

P (h) = P0

(
1 +

PCALT (h− h0)

10000

)
(11)

P (h) = T0 −
TCALT (h− h0)

100
(12)

Further details on the model structure and its functions can be found in Bergström (1992)
and elsewhere.

2.3 WEATHER GENERATION INTRODUCTION
Asmentioned above, rainfall runoff modeling for flood risk assessment require, like many
other hydrology fields or water resources practices, continuous high-resolution precipita-
tion data. In contrast, available precipitation time series are often short (Müller & Haber-
landt, 2015; Westra et al., 2012). Continuous time series are of particular interest in mod-
eling floods since it enables to account for both the antecedent conditions prior to the
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event as well as for the precipitation event influencing the flood. Both these factors could
have a potential significant impact on the resulting magnitude of the flood (Westra et al.,
2012). Long and continuous time series are also motivated to capture the intermittency
in precipitation and sequences of storm pulses (Pui et al., 2009; Molnar&Burlando, 2005).

Moreover, simulating hydrological processes with observed data as the only input re-
sults in estimations based on one individual realization. If another series with similar
attributes as the observed were used, it may change the simulation results (Richardson,
1981). Different types of weather generators have therefore been proposed to extend his-
torical records in several studies (Haberlandt et al., 2011; Richardson, 1981; Breinl et al.,
2015). Weather generators are also used to assess anthropogenic effects of proposed mod-
ifications in the hydrological system, as meteorological data are used as input for models
that simulate hydrological processes (Richardson, 1981).

Many different stochastic rainfall generation models have been proposed during recent
years for short time step rainfall. Due to difficulties with modeling the high intermittence
of high temporal resolution data (which require many parameters) the classical alternating
renewal models are more suitable for daily or longer time step precipitation. Such models
are based on a series of dry-wet spell events. Moreover, the model structure and the pa-
rameter estimation procedure is straightforward and based on point observations. Other
weather generators are autoregressive-moving-average models (ARMA). ARMA models
operate under the premise that current values depend directly on one or more previous
time steps (depending on the order of the autoregressive component) and a moving aver-
age element. These models are often applied to the simulation of continuous time series,
like temperature (Haberlandt et al., 2011).

2.3.1 Weather generator theory
Precipitation can be described as a stochastic process, i.e., a process Yt with sequences of
random variables Xi (that usually are correlated). A precipitation time series represents
one such realization of the process. Dimensionality, persistence and stationarity are im-
portant characteristics in stochastic processes. A univariate or one-dimensional system
considers one variable as a function of time while multivariate systems include more than
one variable that may depend on both time and space. Many hydrological processes are
continuous and the variables controlling the process may inherit information from ear-
lier time steps (dependent variables). Such processes are categorized as processes with
Markov-character, which means that all required information for Yt can be acquired ex-
clusively from t previous time steps (Haberlandt, et al., 2011).

If the stochastic process instead is governed by a probability distribution independent of
time, the process is called stationary or time invariant. Stochastic processes can be sep-
arated into three different types: the normal type, the point process and the alternating
process. The normal process is characterized by constant or steady varying behavior, a
process without sudden change (e.g. a river flow). Point processes are instead character-
ized by being events of short duration occurring randomly in time. The alternating routine
comprises two exclusive normal processes. An intermittent routine is a special case for
which one of the alternating processes is zero (Haberlandt et al., 2011).
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Precipitation is a complex version of an intermittent process (wet-dry periods) in space
and time. The occurrence and intensity of rainfall are in many weather generators seen as
dissimilar processes. Precipitation intermittency and variability increase with decreasing
time steps. At daily resolution, a precipitation time series displays temporal intermittency.
Finding a suitable model which can simulate both occurrence and precipitation amount is
therefore needed. A common method for doing this is to use two separate models, one
for occurrence and one model for precipitation depths. Markov chain models are suitable
for modeling the occurrence of precipitation (Haberlandt et al., 2011; Richardson, 1981;
Breinl et al., 2015).

Discrete observations in the time series represent altered states in the Markov chain and a
sequence of states is described using transition probabilities. Typically, transition proba-
bilities depend on a few previous time steps of the chain and are conditional. Similarly,
the probability governing the sequent time step depends on q foregoing time steps. The
order of q determines the order of the Markov chain. Precipitation occurrence is generally
modeled using a two-state Markov chain of first order. A day with precipitation is rep-
resented by a number, as for example 1, corresponding to a wet state and a day without
precipitation by 0 corresponding to a dry state. Four transition probabilities are used in
Markov chain models (Haberlandt et al., 2011).

(i) p10 wet state followed by a
dry state

(ii) p00 a dry state followed by a
dry state

(iii) p11 a wet state followed by a
wet state

(iv) p01 a dry state followed by a
wet state

p01 and p00 sums up to 1 which also goes for p11 and p10. These probabilities can be de-
rived from the observed time series. A precipitation time series can then be simulated
using a uniform [0, 1] random number generator which compares the generated value to
that of the transition probability. A number corresponding to a value less then the transi-
tion probability will result in a state which is wet on the following day or dry respectively
if the value is higher than the transition probability. The precipitation depths for different
wet states can be estimated using a suitable probability distribution assuming that precip-
itation amounts are serially independent (Haberlandt et al., 2011).

Assessment on the output of hydrological models when using synthetic rainfall data from
weather generators as input, has only been done in a few studies to the author’s knowledge
(e.g. Booij, 2005; Breinl, 2016; Haberlandt et al., 2011).
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2.3.2 Weather generator in this study
A weather generator must develop an underlying structure to account for certain relation-
ships between meteorological processes. For example, temperature is more probable to
be below normal on a rainy day and the maximum and minimum temperature is likely to
be small on a cloudy day. Here temperature is conditioned to precipitation since this is
the primary variable (Richardson, 1981).

In this study the weather generator of Breinl et al (2015b) was used one-to-one with per-
mission for the generation of daily weather at the study sites. The simulations from the
weather generator were then used for disaggregation. As many other weather generators,
this model uses two-stateMarkov chains of second order for the generation of daily precip-
itation occurrences. Precipitation amounts are simulated using a two-step process which
first resamples observations using parametric functions and then reshuffles the parametric
values (Breinl et al., 2015b).

Here, a gamma distribution was used (different models for each month) which is the most
common distribution for this purpose. The gamma distribution was also suitable since it
has been applied in the geographically neighboring state with similar environment (Breinl
et al., 2013). This methodology allows for creation of unobserved extremes which is of
great interest to make projections on future scenarios (Breinl et al., 2015b). Many other
traditional weather generators can only reproduce observed precipitation events. Temper-
ature data are simulated conditioned to rainfall by using ARMAmodels (Breinl et al, 2013,
2015b). For more information on the weather generator, see (Breinl et al, 2013, 2015a,
2015b; Richardson, 1981).

2.4 PRECIPITATION DISAGGREGATION INTRODUCTION
As mentioned in the introduction, data at hourly resolution is often indispensable for flood
design modeling (Pui et al., 2009). In fact, flash floods, floods associated with isolated
and localized very intense precipitation in small and medium sized catchments, may be
especially hard to simulate since peak discharges are maintained only for hours or minutes
(Kobold & Brilly, 2006).

Disaggregation of precipitation data is thus required and provides an attractive alterna-
tive to achieve sufficient temporal resolution (Olsson, 1998). It is important that these
models preserve central statistical properties such as the characteristics of extreme events,
intermittency and scaling distributions seen in the observed rainfall (Molnar & Burlando,
2005). The floods seen in Europe and elsewhere during recent years emphasize the im-
portance of evaluating short-term processes of runoff generation adequately (Güntner et
al., 2001). Therefore, different precipitation disaggregation methods such as the random
multiplicative cascades (microcanonical and canonical) and the nonparametric method of
fragments have been tested for obtaining fine resolution rainfall data for design flood anal-
ysis (Pui et al., 2009).

These models have been seen to reproduce conventional statistics (such as mean and vari-
ance) and empirical wet spells satisfactory. If the output of the precipitation disaggrega-
tion models is to be used for flood design purposes, the generation of realistic dry and wet
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spells are especially important to account for antecedent soil conditions. In general, the
method of fragments model turned out to outperform the aforementioned models and was
the only method to satisfactorily mimic extreme weather behavior at hourly scale (Pui et
al., 2009). However, the method of fragments effectivity to reproduce observed precip-
itation can also serve as its limit. The model’s underlying logic is based on resampling
observed precipitation events with the closest resemblance to the day to be disaggregated.
Therefore, it is expected to produce statistics with close affinity to that of the observed
time series. This may also limit the model’s ability and flexibility to produce unobserved
events. The same problem faces the cascade models as well, since their parameters are
estimated based on historical observations, assuming that parameters are stationary even
under changed climate conditions. Therefore, it could be highly useful to test different
disaggregation models on their capability to simulate events beyond historic observations
when using synthetic precipitation with unobserved measures as input (Pui et al., 2009).

In contrast, cascade modeling for disaggregating precipitation data has been used success-
fully to capture fundamental features of precipitation processes over a range of scales. The
distribution of dry and rainy periods as well as the scaling structures of observed data are
very well reproduced with a microcanonical disaggregation approach while the number
of dry intervals as well as the durability of dry and wet periods tend to be slightly under-
estimated. This indicates that the precipitation producing mechanism inherent a certain
cascade type behavior. It also suggests that precipitation models which are scaling-based
could provide an important tool in hydrological practices (Olsson, 1998). This has been
strengthened by Müller & Haberlandt (2015) who state that uniform splitting, a micro-
canonical cascade model version, is able to reproduce rainfall characteristics well. Their
model was also able to mimic statistics from observed time series while observed extreme
values were reproduced reasonably well, thereby slightly overestimating the precipitation
amounts for higher non exceedance probabilities (Müller & Haberlandt, 2015).

2.4.1 Random multiplicative cascade models
Mass is distributed gradually in a multiplicative manner into consecutive levels in discrete
multiplicative cascade models. If V > 0, i.e., the box is wet, mass is distributed from one
cascade level to the nearest higher, which corresponds to an increase in resolution depend-
ing on the branching number, b. A branching number b equal to two refers to a doubling
of resolution and mass is distributed between two boxes which each represent a time inter-
val T and an associated volume V (Olsson, 1998). The transition of mass from higher to
consecutive cascade levels occurs via a so-called cascade generator,W , which distributes
the mass in a multiplicative manner. Depending on how mass is distributed, i.e., how
the cascade generator is programmed, determines the version of cascade model. Cascade
generators that preserve mass on average during the disaggregation are noted canonical
while a generator that preserves mass exactly are called microcanonical (Molnar & Bur-
lando, 2005). Precipitation disaggregation in multiplicative cascade models is reminiscent
of observed precipitation scaling patterns. These models have been successfully applied
to precipitation modeling (Molnar & Burlando, 2005; Müller & Haberlandt, 2015; Pui et
al., 2009; Olsson, 1998). In Figure (1) the branching number b is equal to two in all the
consecutive levels to achieve a resulting temporal resolution of 0.75 h (Müller & Haber-
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landt, 2015).

Figure 1. A principle sketch of a microcanonical cascade model. Here, a 24 mm rain is
disaggregated from daily, 24h → 12h → 6h → 3h → 1.5h → to 0.75h. Boxes of zero
are considered dry and nonzero boxes are wet.

It should be noted that even if comparisons between different disaggregation models with-
out doubt offer useful insights, it is impossible to draw any general conclusion on best
model structure for precipitation disaggregation. This has to do with precipitation proper-
ties and generating mechanisms being significantly different at different climate regions
(Pui et al., 2012).

2.4.2 Microcanonical cascade model with uniform splitting
In this study, a microcanonical cascade model with uniform splitting was used (Müller &
Haberlandt, 2015).

For every increase in resolution, the precipitation volume V from a coarser level i is dis-
tributed in a multiplicative manner via the cascade generator W into a successive level
with a finer resolution. The mass is preserved exactly during disaggregation. To achieve
a temporal resolution of one hour, this method uses branching number b equal to three in
the first disaggregation step and then b equal to two in the consecutive levels. This leads
to a temporal resolution of one hour (24h → 8h → 4h → 2h → 1h). For b equal to
three, there are seven principal possibilities of how precipitation can be distributed when
disaggregated with the condition that the boxes (time steps) Ti and Ti+1 are short enough
to have a nonzero probability of zero precipitation. Each split is related to a probability,
P . There are seven different possibilities of disaggregation when b is equal to three (Ols-
son, 1998; Müller & Haberlandt, 2015; Güntner et al., 2001). If mass is distributed so
that the whole volume of precipitation is allocated to the first time interval, Ti, i.e., if the
weighted multiplicators from the cascade generator have the valuesW1 = 1,W2 = 0 and
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W3 = 0, corresponds to one wet interval of the particular day with probability P(1/0/0).
For each split, the sum ofW1, W2 andW3 is equal to one. The probability P(1/0/0) does
not affect the position of the wet interval, only the number of wet boxes to avoid over-
parametrization. The position of a wet box is assigned randomly (Müller & Haberlandt,
2015).

The other possibilities of precipitation disaggregation using b equal to three are the prob-
abilities for two or three wet intervals during a day. The probability for two wet intervals
P(0.5/0.5/0) can occur in three different ways. The probability of three wet intervals can
occur in one way, i.e., P(0.33/0.33/0.33) (Müller & Haberlandt, 2015).

W1,W2,W3 =



1, 0 and 0 with probability P (1/0/0)
0, 1 and 0 with probability P (0/1/0)
0, 0 and 1 with probability P (0/0/1)
1
2
, 1
2
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2
/1
2
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2
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The precipitation volume from a coarser level is distributed uniformly amongst all boxes
that are defined as wet. These parameters can be estimated through calculating the num-
ber of occurrences for each combination from a high-resolution historical time series. For
higher precipitation depths, the probability for two or three wet 8-h intervals increases.
Therefore, a volume threshold is identified to account for these differences and to separate
precipitation into different volume classes conditional to total daily precipitation depths.
The threshold was chosen to q0.998 in this study in line with Müller & Haberlandt (2015).
A microcanonical model with uniform splitting has branching number b equal to three in
the first step followed by b equal to two in the consecutive steps Figure (2) (Müller &
Haberlandt, 2015).

For level two to five where the branching number b is equal to two, there are three principal
possibilities of how rainfall can be distributed when disaggregated. The three different
possibilities of precipitation disaggregation are shown below. If mass is distributed so
that the whole volume of precipitation is allocated to the first time interval, Ti, i.e., if the
weighted multiplicators from the cascade generator have the valuesW1 = 1 andW2 = 0
corresponds to P(1/0). The weighted multiplicators are not independent of each other. For
each split, the sum of W1 and W2 is equal to one. With probability P(0/1) splitting is
achieved vice versa since no precipitation is assigned to the first time stepW1. The third
possibility of disaggregation is a redistribution of mass from the coarser level to both finer
time steps so thatW1 = x, 0 < x < 1,W2 = 1−W1. This corresponds to the probability
P(x/(1-x)) where x is a random variable in all disaggregation steps. The density function
f(x) can be estimated if a probability for each value of x is assigned and if these values are
associated with a certain theoretical probability distribution Wx/x (Olsson, 1998; Müller
& Haberlandt, 2015; Güntner et al., 2001).
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Figure 2. A schematic visualization of amicrocanonical cascademodel with uniform split-
ting. In the first level the branching number is b = 3. Here, a 24 mm rain is disaggregated
from daily to hourly values (24 → 8 → 4 → 2 → 1). Boxes of zero are considered dry
and nonzero boxes are wet.

W1,W2 =


1 and 0 with probability P (1/0)
0 and 1 with probability P (0/1)

x and 1− x with probability P (x/(1− x)); 0 < x < 1

Parameter dependencies have been found on the position in the precipitation sequence
as well as for the precipitation volume of each time interval. This dependence could be
seen due to the growth of P(x/(1-x)) for increasing volumes as well as for boxes inside
a precipitation sequence in comparison to boxes in the edge of sequences where P(x/(1-
x)) was lower. To account for these differences in probability, each box is divided into
a specific position class depending on attributes of the adjacent boxes as well as into a
volume class depending on the magnitude of the precipitation depth (Güntner et al., 2001;
Olsson, 1998). The four position classes are (i) starting boxes, (ii) enclosed boxes, (iii)
ending boxes and (iv) isolated boxes (Olsson, 1998; Müller & Haberlandt, 2015; Güntner
et al., 2001). The probabilites for P((1/3)/(1/3)/(1/3)), P((1/2)/(1/2)/0) and P(1/0/0) are
the same for all position classes and the same goes for the different probabilities when b
is equal to two (Müller & Haberlandt, 2015).

(i) starting boxes dry,wet,wet

(ii) enclosed boxes wet,wet,wet

(iii) ending boxes wet,wet,dry

(iv) isolated boxes dry,wet,dry

A higher and lower volume class was also chosen for level two-five (where b is equal to
two) to account for the different probabilities related to the volume of the precipitation
mentioned above. The volume threshold for level two-five was here chosen to the precip-
itation median. This is motivated because the median had the advantage of having equal
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number of boxes for each volume class. The parameters were estimated by counting the
number of occurrences from the historical high-resolution time series for each combina-
tion of position-volume class. The approximation of f(x) was done in a similar fashion
(Müller & Haberlandt, 2015).

2.5 METHOD OF FRAGMENTS INTRODUCTION
The method of fragments model was programmed in Matlab by looking at model struc-
tures used in other studies (Pui et al., 2012; Westra et al., 2012; Westra & Sharma, 2010).

The method of fragments is categorized as a resampling and a non-parametric model. One
constructive attribute of the method is that it does not require the assumption of a theoret-
ical distribution related to the dataset. Instead, attributes from the data record of interest
are used as criteria in the disaggregation process. The sequence of daily precipitation to
be disaggregated may either come from historical records at the site of interest or from
stochastic weather generation models. The method then samples fragments of sub-daily
to daily ratios from historical hourly data at the same site or from multiple nearby sites
conditional on properties of the daily precipitation at the site of interest. These condi-
tions include comparison between total daily precipitation amounts between the day of
interest and aggregated hourly data from historical records in a predefined time window
to account for seasonal differences. Furthermore, a classification based on whether the
wetness state of the antecedent and successive day is wet or dry is used as criteria in the
sampling process (Westra & Sharma, 2010).

2.5.1 Method of fragments algorithm
The following algorithm gives a thorough description of the methodology used to disag-
gregate the daily precipitation time series into a time series of hourly resolution in this
study. The steps are as follows:

(i) Obtain the daily time series Rt to disaggregate where t is the notation for the day to
disaggregate. Use historical records of hourly data, Xi,m, to form daily time series Ri

(equation 13) werem is the sub-daily time step and i denotes the day. Form a data series
with sub-daily to daily ratios (equation 14).

Ri =
24∑
m

Xi,m (13)

fi,m =
Xi,m

Ri

(14)

(ii) Form a moving window with l days centered around a particular day t of the daily pre-
cipitation time series, Rt, which you want to disaggregate. l is dependent on the length of
historic time series and is in this example chosen to 15 days. If March the 16th is to be dis-
aggregated, the observational window spans from 1-31 March (subtracting the same year
if one uses historical precipitation from the same station). By limiting the observational
window, the model also accounts for seasonal differences. Similar to the microcanonical
approach, four different classes are formed depending on the wetness state of neighboring
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days. This is done to account for continuity in precipitation events (Pui et al., 2012).

Class (1) starting boxes [dry, wet, wet], Rj ≥ 0 | (Rj−1 = 0, Rj+1 ≥ 0)

Class (2) enclosed boxes [wet, wet, wet], Rj ≥ 0 | (Rj−1 ≥ 0, Rj+1 ≥ 0)

Class (3) ending boxes [wet, wet, dry], Rj ≥ 0 | (Rj−1 ≥ 0, Rj+1 = 0)

Class (4) isolated boxes [dry, wet, dry], Rj ≥ 0 | (Rj−1 = 0, Rj+1 = 0)

Here j represents any day within the window centered around the specific date of the day
t to be disaggregated.

(iii) Identify which class Rt belongs to.

(iv) Identify the number of nearest data observation neighbors k by k =
√
n , where n is

the notation for the sample size of the days falling within the time window l and satisfying
the class criteria. Classify these neighbors according to |Rj −Rt| giving the day with the
lowest absolute difference the smallest rank out of the numbers j = 1, 2, . . . , k so that the
ranked daily precipitation time series is noted Rj . The lowest ranked neighbor will have
the highest probability p(j) to be picked from equation (15) using a uniformly distributed
random number (0,1) (Pui et al., 2012).

p(j) =
1/j∑k
i=1 1/i

(15)

Use the date of picked day to find the corresponding fragments vector in fi,m. Insert
the fragments into day t using equation (16) to form the new disaggregated time series
Rthourly.

Rthourly = Rt x fi,m (16)

(v)Repeat step (ii) to (iv) for each day until disaggregation is completed. All the steps and
further reading can be found in (Pui et al., 2012; Westra et al., 2012; Westra & Sharma,
2010).

3 MATERIAL AND METHODS
3.1 STUDY AREA AND DATA
The study was conducted with data from three catchments in Tyrol around the 47◦N 10-
12◦E in the Austrian Alps. Table 1 summarizes the available data where it can be seen
that Kelchsauer and Gurglbach are similar with respect to elevation ranges m.a.s.l and po-
tential evaporation (PET). Precipitation and temperature gauges for Ruetz are located at a
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higher altitude compared to the gauges in the Kelchsauer and Gurglbach catchments.

The catchments were chosen based on available data and catchment area. Moreover, the
catchments had to be without the influence of hydropower stations to simplify analysis.
These catchments also had the HBV required continuous hourly precipitation, temperature
and discharge series (referred to as PTQ in HBV). The PTQ series ranged from 2000 -
2015 for Kelchsauer, 1997 - 2015 for Gurglbach and 2000 - 2015 for Ruetz. Continuous
precipitation series were longer for Kelchsauer (1978 - 2015) and Gurglbach (1979 - 2015)
in comparison with Ruetz (2000 - 2015). Ruetz was of particular interest since it was
recently affected by a flood event (see Anon, 2015).

Table 1. Defining characteristics for the study catchments.

Catchment Krößbach Ruetz Kelchsauer Ache Gurglbach
Area [km2] 128.8 134.2 78.5
PET [mm year−1] 284 470 510
Precipitation [mm year−1] 1108 1373 966
Average discharge [m3s−1] 5.3 5.4 1.9
Highest discharge peak [m3s−1] 141.5 99.9 39.1
Elevation range [m a.s.l] 1095-3484 661-2450 804-2580
Rain gauge elevation [m a.s.l] 2308 815 854

3.1.1 Hydrology in the Alps
Typically, Alpine regions are affected by big differences in hydrology between summer
and winter. During winter discharge is generally lower due to storage in ice or snow. Ice
and snow significantly influence the hydrology in Alpine catchment. Runoff generation
during winter is regulated by snow cover which results in a time lag between precipitation
and discharge (Vanham et al., 2008).

3.2 MODELING FRAMEWORK
A conceptual sketch of the modeling framework seen in Figure (3) clarifies the different
steps of the proposed framework. Theweather generator extrapolates data points from pre-
cipitation and temperature observations while the disaggregation procedure increases the
temporal resolution so that a design flood of wanted return period T on hourly timescale
can be estimated. To estimate design floods beyond 50 years is problematic since envi-
ronmental circumstances may change during such time intervals.
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Figure 3. A conceptual sketch of the modeling framework.

3.3 FREQUENCY ANALYSIS METHODOLOGY
In this study, the annual maximum hourly flows were assessed to estimate design floods
for the study catchments. The frequency analysis was done in Matlab by approximating
parameters from the probability distributions (EV1, LP3, P3, GEV, LN) to minimize the
error to the observed series of annual discharge peaks with the method of maximum likeli-
hood (Okoli 2017, personal communication; Myung, 2003). The fitted distributions could
then be used to estimate a 20- and 50-year flood.

3.4 HBV LIGHT METHODOLOGY
TheHBV-light version requires a warm up period for the initial state variables of themodel
to take on appropriate values for the simulation based on meteorological conditions and
parameter values. Time series of one year have turned out to be sufficient for the warm
up process which was also used in this study (Seibert, 2012).

Potential evaporation (PET) had to be estimated to run the HBV model. It was calculated
using the Thornthwaite equation (17) found in (Xu & Singh, 2001). Ta is the longterm
mean monthly temperature in degrees celcius, C = 16 is a constant, I is the annual heat
index, N the number of days in a month and d is the average monthly daylight in hours
(Xu & Singh, 2001). Thornthwaite is a temperature based method to estimate PET. It has
been shown that simple temperature based methods for approximating PET are as efficient
as more intricate methods like the Penman model (Oudin, et al., 2005).

ET = C(
10Ta

I
)a(

d

12
)(
N

30
) (17)

The annual heat index I is calculated with equation (18). If the mean monthly temperature
is zero or less than zero, Ta=0 (Xu & Singh, 2001).

I =
12∑
j=1

(
Ta

5
)1.51 (18)

The exponent a is calculated using equation (19) (Xu & Singh, 2001)
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a = 67.5 · 10−8 · I3 − 77.110−6 · I2 + 0.0179 · I + 0.492 (19)

The hours of daylight, d, in equation (17) was estimated based on a table found in Yoo &
Boyd (1994). The calculated values from the Thornthwaite equation (17) were adjusted
to the long term mean potential evaporation in the study areas by looking at historic ob-
servations.

To account for differences in altitude in the different parts of the catchment, elevation
zones were computed in a GIS software using natural breaks for classification as seen in
a similar study by Breinl (2016). The use of elevation zones have also been seen to im-
prove snow retention simulations in the HBV model (Breinl, 2016). However, to avoid
over-parametrization the parameters CWH and CFR were fixed to 0.1 and 0.05 (Seibert,
1997, 2000; Breinl, 2016).

The elevations zones were extracted using the “extract by mask” tool in ArcGIS.

Two different objective functions were used in HBV for this study. The default objective
function in the HBV model’s interface is the Nash & Sutcliffe (1970) Reff . It is the value
of this objective function that was used to assess model efficiency. The other objective
function used in HBV for this study was the LindstroemMeasure. The LindstroemMea-
sure was only used during automatic calibration to constrain parameter ranges (Seibert,
1999).

Some analyses were made to assess parameter uncertainty. This was done by plotting dif-
ferent parameter values against the values of Reff (1). For a well-defined parameter, a
distinct peak could be seen in the plot and abnormalities from the peak value reduced the
fit in relation to the objective function. For parameters that are less well-defined, values
on broad ranges may result in equally good fits resulting in a plateau in the plot (Seibert,
1997).

To assess parameter sensitivity, varying one or two parameters at a time was done and
changes in the objective function Reff were evaluated (Seibert, 2012). However, even
if equally good results may be produced from a broad range of values of one parame-
ter, this does not mean that the model is not sensitive to changes in this parameter. As
stated above, changes in a sensitive parameter may be compensated by other parameters.
Therefore, it is of importance to distinguish between uncertain parameters and insensi-
tive parameters which may be set to some constant value (something seen in many HBV
applications for the parameters CWH and CFR for example as described above) and sensi-
tive parameters that have a big influence on the objective function when they are changed
alone. The aforementioned is also important to avoid overparametrization (Seibert, 1997).

In this study, the HBV model was calibrated with Monte-Carlo and GAP simulations.
The initial values of the parameters were set according to physically reasonable ranges
used in other HBV studies (Bergström, 1990; Seibert, 1997). The parameters which de-
pend on time step where adjusted accordingly. Thereafter, 5000 Monte-Carlo simulations
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were used to find which ranges of parameter values that resulted in sufficient model fits.
The ranges of some parameters were extended somewhat for the simulations where the
parameter values were close the maximum or minimum during the first phase of the cali-
brations (Seibert, 1999). To account for equifinality (Beven & Freer, 2001) 100 different
but suitable parameter sets (sets with the smallest error according to Reff ) from 200 000
Monte-Carlo runs were determined to be used for the runoff simulations (Bergström, 1990;
Breinl, 2016; Seibert, 1997, 2000). A validation was carried out on an independent time
period to test the uncertainty of the calibrated parameter sets (Seibert, 2000). The refer-
ence values for the parameters in the HBV light model are listed in appendix 1 (Bergström,
1990).

3.5 WEATHER GENERATION METHODOLOGY
To account for many different scenarios, 25 realizations of 100 years of daily rainfall and
temperature data were generated based on the observed time series for each catchment
(Breinl 2017, personal communication). These time series were then used for analysis.

3.6 METHOD OF FRAGMENTS METHODOLOGY
There were big deviations between the daily observed precipitation time series and the
observed hourly precipitation series for all three catchments used in the study. The Tyro-
lian meteorological office reported in a request, that the hourly values are measured from
06:00 to 07:00 on the consecutive day and that deviations between daily and aggregated
hourly values are still possible in the region due to slightly different locations of the gauges
over time or changes in the hourly measuring techniques over time. Aggregating hourly
values according to this interval, confirmed some of these deviations between the aggre-
gated hourly-to-daily values and the original daily values. However, this was confirmed
at a late stage so that aggregation between 00:00-23:00 already had been conducted. The
deviations seemed to be smaller for extremes. This may result in slightly offset disaggre-
gated hourly values since they depend upon the aggregated hourly data.

The performance of the implemented method of fragments model had to be validated. As
daily records were not available when this research was carried out and hourly time series
in the study areas are sufficiently long with 14, 34 and 37 years for Ruetz, Kelchsauer and
Gurglbach, hourly time series were aggregated to daily values. The daily series were then
disaggregated again using the same hourly data series used to aggregate the daily values.
The disaggregation was done as described in the theory section of the method of fragments
algorithm. Since the aggregated daily series and hourly series came from the same station,
the algorithm was computed so that the model could not choose precipitation ratios from
days of the same year as the day to be disaggregated.

A parameter uncertainty analysis was conducted for each of the study catchments with
the method of fragments model. The only two adjustable parameters in the method of
fragments model are the length of the time window l and the parameter controlling the
number of nearest neighbors k. The sensitivity analysis was made by varying one pa-
rameter while the other was kept constant. The length of the time window was tested for
l = 31 days and l = 37 days. For each setting of the time window, l, the parameter k was
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given the values k = 8− 10− 12. For each different model set, 15 runs of the method of
fragments model were made. The best model structure was determined by evaluating the
model’s performance to reproduce monthly maximas compared to the observed monthly
maximum values. A similar validation criteria was used by Westra (2012) and Pui (2012)
with the difference that the mentioned studies used annual maximas instead of monthly
maximum values. I chose to look at the reproduction of monthly maximas to have more
data points to evaluate the model performance from since the data series used in this study
were smaller than all samples used in Westra (2012). Other validation statistics to assess
the model’s reproduction of hourly precipitation, were the total mean, the total variance
and the proportion of days with zero rainfall (Westra et al., 2012; Pui et al., 2012). The
mean values are expected to be well represented by the different disaggregation models
(Pui et al., 2012).

Confidence boundaries were represented by the 5th and 95thpercentile seen in the 15 re-
alizations. This was also done by Westra (2012) with the difference that he used 100
simulations for each setting. On the other hand, Pui (2012) used 10 realizations to asses
the model performance. I chose to do 15 initial runs with each model setting. If the dif-
ference between the 10th and the 15th run for a specific parameter setup was more than
five percent, another five runs were made until the difference between monthly maximas
from the X th and the X th+5 runs was smaller than five percent.

In addition to plotting empirical intensity-frequency curves (probability of exceedance
plots) to evaluate the reproduction of the monthly maximum values (Westra et al., 2012;
Pui et al., 2012), an objective function was used to evaluate model performance. For this
purpose, the Reff objective function was used.

From the weather generator, 25 realizations of 100 years of rainfall data for each of the
three study catchments were applied for disaggregation with the method of fragments
model. The realizations are extrapolations out of the existing precipitation data series
generated with the weather generator described earlier. Each realization was modeled
two times for the best model structure determined from the validation procedure described
above. Hence, 50 realizations were produced with 100 years of hourly data for each catch-
ment.

3.7 MICROCANONICAL MODEL METHODOLOGY
As for the method of fragments model, 25 realizations of 100 years of weather generated
data were used as input. The disaggregated precipitation data series from the microcanon-
ical model was then used for analysis.

3.8 TEMPERATURE DISAGGREGATION METHODOLOGY
Temperature classes were defined based on the rainfall of neighboring days, similar to
the procedure seen for the method of fragments algorithm. Temperature classes condi-
tioned to the precipitation accounted for the underlying relations between meteorological
processes. In addition to the precipitation classes presented under section 2.5.1, three
more classes were added to give a criterion of uniformity for the days without precipita-
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tion which were not classified in the method of fragments algorithm. This was motivated
since approximately 80 % of the days from the time series of the study sites are days with-
out precipitation. Hence, without these extra classes, many sequences of days would not
have been included in the original set of classes and the only criteria to distinguish the day
to disaggregate would be from the smallest absolute difference in temperature from days
within the time window. The three extra classes are listed below.

Class (1) starting boxes [dry, wet, wet], Rj ≥ 0 | (Rj−1 = 0, Rj+1 ≥ 0)

Class (2) enclosed boxes [wet, wet, wet], Rj ≥ 0 | (Rj−1 ≥ 0, Rj+1 ≥ 0)

Class (3) ending boxes [wet, wet, dry], Rj ≥ 0 | (Rj−1 ≥ 0, Rj+1 = 0)

Class (4) isolated boxes [dry, wet, dry], Rj ≥ 0 | (Rj−1 = 0, Rj+1 = 0)

Class (5) dry boxes [dry, dry, dry], Rj = 0 | (Rj−1 = 0, Rj+1 = 0)

Class (6) end of dry boxes [dry, dry, wet], Rj = 0 | (Rj−1 = 0, Rj+1 ≥ 0)

Class (7) start of dry boxes [wet, dry, dry], Rj = 0 | (Rj−1 ≥ 0, Rj+1 = 0)

As with the method of fragments algorithm, j represents any day centered around day t to
be disaggregated.

The time window was constructed as described for the method of fragments algorithm
with 37 days, l = +/− 19 centered around day t to be disaggregated. The parameter that
regulates the number of possible days to choose from, k, was set to five. If more than five
days fulfill the disaggregation criteria, the code considers only the five days with the least
absolute difference in temperature. The absolute difference was pursued to account for
the negative sign for temperature below zero.

Another difference from themethod of fragments algorithmwas how the daily values were
summarized. To account for temperatures below zero when aggregating hourly values into
daily, the absolute sum was used. This was done to give representative ratios of sub daily
to daily temperatures and to have the right sign (minus/plus) for the day in the temperature
ratio vector Ti,m seen in equation (20) below.

TempRatioi,m =
Thourly,i,m

Tabsdailyi

(20)

The daily temperature time series were disaggregated in a similar fashion seen for the pre-
cipitation disaggregation with the method of fragments model with the above differences.
Residuals were calculated between the observed hourly temperature series and the sim-
ulated hourly temperature series, | Thourly − Tsimhourly | compared to residuals between
daily values and their daily averages, | Thourly − Tdailyaverages |
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4 RESULTS
4.1 FREQUENCY ANALYSIS
A conventional frequency analysis was made where the asymptotic distributions called
GEV, Gumbel (EV1), Lognormal, Pearson type III and the Log Pearson type III were fit-
ted to a series of annual maximum flows [m3s−1] for each of the three study catchments.
First of all it can be seen in Table 3 and 2 that there is a big difference in design flows
for each of the study sites. Furthermore, the estimated design floods with return period
T = 50 & T = 20 years seen in the tables vary greatly between the different distributions
fitted to the sample. Note that Qobs is not a representation of the 20 or 50-year flood, it
is the highest flow seen in the data samples for each study site. For the Ruetz catchment,
20 annual maximum runoff peaks were constructed (from 20 full years of discharge data),
while 37 and 34 maximum annual discharges were constructed for the Kelchsauer and
Gurglbach catchment respectively.

Table 2. A summary of the results obtained with frequency analysis. The distributions
were fitted to the sample with maximum likelihood to estimate a design flood [m3s−1]
with 20 year return period.

T = 20 [y] Qobs,max GEV EV1 P3 LP3 LogNorm Unit
Ruetz 141.5 150.7 87.3 103.2 112.1 95.2 m3s−1

Kelchsauer 99.9 85.5 82.2 82.1 84.6 84.1 m3s−1

Gurglbach 39.06 20.5 18.1 19.9 20.4 19.7 m3s−1

Table 3. A summary of the results obtained with frequency analysis. The distributions
were fitted to the sample with maximum likelihood to estimate a design flood [m3s−1]
with 50 year return period.

T = 50 [y] Qobs,max GEV EV1 P3 LP3 LogNorm Unit
Ruetz 141.5 304.7 101.9 127.2 162.8 114.0 m3s−1

Kelchsauer 99.9 85.5 82.2 82.1 84.6 84.1 m3s−1

Gurglbach 39.06 26.9 21.4 23.7 26.2 24.1 m3s−1

The number of years with historical data means that Q20 is within the observations while
Q50 is extrapolated. To give a visual representation of the uncertainty in conventional fre-
quency analysis, graphs of the maximum monthly flows [m3s−1] were also constructed.
In the Ruetz catchment, the catchment with the least amount of data, it can be seen in Fig-
ure (4) that the spread between the different fitted distributions is wide. Especially GEV
seems to diverge from the observed data points. For the Kelchsauer catchment with most
observed data points, it can be seen in Figure (5) that the variation between the different
fitted asymptotic distributions is less than the difference seen between the distributions
for the other catchment. However, despite the smaller variation in estimated design flows
for the fitted distributions, the residuals, Yobs − Ysim, are big, especially for flows with a
return period T > 10 years.
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Figure 4. Probability of exceedence plots for Ruetz. Different asymptotic probability dis-
tributions have been fitted to observed annual maximum flows [m3s−1] using the method
of maximum likelihood. The blue points represent observed discharge and the colored
lines represent different probability distributions.

Figure 5. Probability of exceedence plots for Kelchsauer. Different asymptotic probabil-
ity distributions have been fitted to observed annual maximum flows [m3s−1] using the
method of maximum likelihood. The blue points represent observed discharge and the
colored lines represent different probability distributions.

In Figure (6) the probability distributions are constrained but the observed data points
diverge from the fitted distributions, especially for flows with return period greater than
10 years.
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Figure 6. Probability of exceedence plots for Gurglbach. Different asymptotic probabil-
ity distributions have been fitted to observed annual maximum flows [m3s−1] using the
method of maximum likelihood. The blue points represent observed discharge and the
colored lines represent different probability distributions.

4.2 HBV CALIBRATION AND VALIDATION
The calibration and validation plots in this section are computed from the parameter set
with highest objective function value simulated fromGAP-optimizations. In Figure (7a)/(7b),(8a)/
(8b) and especially (9a)/(9b), it is noteworthy that peaks in general are underestimated and
sometimes not simulated at all by the model with these parameter sets.
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(a)

(b)

Figure 7. Calibration (a) and validation (b) plots for Ruetz. The simulations were based
on historic observations between 2008/07/28 - 2015/03/31 for calibration and 2004/09/15
- 2007/01/24 for validation.

The final parameter ranges used during calibration and validation in the HBV model were
estimated by plotting parameter values from 5000 Monte-Carlo simulations against the
objective function. If a distinct peak or flat area was found in the plots, the ranges were not
extended. Else, if the reference ranges from Table (4) did not catch the peak, ranges were
slightly extended. These final ranges can be seen in Appendix A 1 were PCALT was one
of parameters with a displaced range in relation to reference values. Some example plots
on parameter ranges can be found in Appendix B. These were used to get an understanding
of how well defined the parameter was.
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(a)

(b)

Figure 8. Calibration (a) and validation (b) plots for Kelchsauer. The simulations
were based on historic observations between 2007/05/04 - 2015/03/31 for calibration and
2000/12/05 - 2007/04/29 for validation.
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(a)

(b)

Figure 9. Calibration (a) and validation (b) plots for Gurglbach. The simulations were
based on historic observations between 2005/03/31 - 2011/01/01 for calibration and
2011/01/02 - 2015/03/01 for validation.
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Table 4. The modeled parameters and their ranges in the HBV model.

Parameter Explanation Min Max Unit
Snow Routine
TT Threshold temperature -0.5 1.5 ◦C
CFMAX Degree-day factor 0.05 0.3 mm ◦C−1 h−1

SFCF Snowfall correction factor 0.5 1.5 -
CFR Refreezing coefficient 0.05 0.05 -
CWH Water holding capacity 0.1 0.1 -
Soil& evaporation
Routine
FC Maximum soil moisture 100 300 mm
LP Soil moisture threshold for 0 1 -

reduction of evaporation
Beta Shape coefficient 0.01 4 -
Groundwater&
response routine
K0 Recession coefficient 0.0033 0.02916 h−1

K1 Recession coefficient 0.00083 0.02083 h−1

K2 Recession coefficient 8.33E-05 0.01 h−1

UZL Threshold for K0-outflow 8 70 mm
PERC Maximal flow from upper 0 0.5 mm h−1

to lower GW-box
MAXBAS Routing, length of 1 30 h

weighting function
Other
CET Potential evaporation 0 0.3 ◦C−1

correction factor
PCALT Change of precipitation 0 14 % 100−1 m−1

with elevation
TCALT Change of temperature 0.6 0.6 % 100−1 m−1

with elevation

4.2.1 HBV sensitivity study
The sensitivity study was performed by changing one parameter at a time while the other
were kept constant. Each parameter value was multiplied by 2 and 0.5 to see what influ-
ence the encroachment would have on the value of the objective function Reff .

Changes in the snow correction factor, SFCF , had great influence on the value of the
objective function for all the three study sites. This indicates the importance of the snow
volume in the three catchments as this parameter compensates for errors in the ”miss-
ing” evaporation of snow as well as systematic errors in snowfall measurements (Seibert,
1999). The degree day factor, CFMAX , controls the amount of meltwater from the sim-
ulated snow pack which was also seen to have a big influence on the value of the objective

30



function for all three catchments.

The change of precipitation with altitude, PCALT , was another parameter identified as
sensitive for all the three catchments. Ruetz, whose measuring gauge is located on higher
altitude than those in Kelchsauer and Gurglbach was not very sensitive to changes in any
other parameter (a doubling/halving of the parameter value lead to changes smaller than
5 % for the value of the objective function).

For Gurglbach and Kelchsauer, some additional parameters were identified as important
for the value of the objective function. PERC, the parameter controlling the maximum
proportion of percolating water from the upper to the lower groundwater box, SLZ, as
well as the parameter K2, regulating the amount runoff from the lower groundwater box.
Kelchsauer was also sensitive to changes in the parameterK1 controlling runoff from the
upper groundwater box.

Gurglbach was further sensitive to changes in LP , the parameter controlling evaporation.

4.3 PRECIPITATION DISAGGREGATION
4.3.1 Method of fragments
The adjustable values in the programmed method of fragments model are the length of
the time window l and the number of nearest neighbors to choose precipitation rate from,
k. To assess the parameter uncertainty of these values, different settings were tested by
varying one of these parameters while keeping the other constant. The most efficient
model structure for Ruetz was l = 37 d and k = 10 (Table 5). This structure was most
effective at reproducing observed statistics according to three out of four criteria. The best
model structure for Kelchsauer was also the model with the parameter values l = 37 d and
k = 10 and for Gurglbach the best model structure was l = 31 d and k = 8.
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Table 5. A summary of the results from a model evaluation procedure. By varying the
length of the window l and the number of possible values to chsose the precipitation rate
from k, the most efficient model structure could be determined for each study catchment.

Parameter µ [mm h−1] ∆ µ % σ2 [mm2 h−2] ∆ σ2 % Dry ratio Reff

Obs Ruetz 31 d 0.1328 0 0.2759 0 0.7698 1
l = 31 d k = 8 0.1322 0.44 0.2990 -8.41 0.8003 0.9165
l = 31 d k = 10 0.1322 0.43 0.3037 -10.09 0.8009 0.9020
l = 31 d k = 12 0.1322 0.44 0.3023 -9.58 0.8008 0.9030
Obs Ruetz 37 d 0.1330 0 0.2763 0 0.7966 1
l = 37 d k = 8 0.1325 0.43 0.3016 -9.15 0.7993 0.9246
l = 37 d k = 10 0.1325 0.42 0.2961 -7.17 0.7999 0.9390
l = 37 d k = 12 0.1324 0.44 0.2991 -8.26 0.8000 0.9243
Obs Kelchsauer 31 d 0.1571 0 0.4196 0 0.8044 1
l = 31 d k = 8 0.1571 0 0.4421 -5.38 0.8051 0.9500
l = 31 d k = 10 0.1571 0 0.4401 -4.89 0.8053 0.9717
l = 31 d k = 12 0.1571 0 0.4368 -4.12 0.8057 0.9697
Obs Kelchsauer 37 d 0.1571 0 0.4197 0 0.8043 1
l = 37 d k = 8 0.1571 0 0.4441 -5.83 0.8049 0.9746
l = 37 d k = 10 0.1571 0 0.4331 -3.20 0.8054 0.9747
l = 37 d k = 12 0.1571 0 0.4333 -3.24 0.8053 0.9710
Obs Gurglbach 31 d 0.1101 0 0.2626 0 0.8754 1
l = 31 d k = 8 0.1100 0 0.2646 -0.77 0.8769 0.9893
l = 31 d k = 10 0.1100 0 0.2779 -5.84 0.8770 0.9877
l = 31 d k = 12 0.1100 0 0.2812 -7.11 0.8770 0.9807
Obs Gurglbach 37 d 0.1101 0 0.2626 0 0.8754 1
l = 37 d k = 8 0.1101 0 0.2769 -5.44 0.8764 0.9879
l = 37 d k = 10 0.1101 0 0.2794 -6.40 0.8765 0.9821
l = 37 d k = 12 0.1101 0 0.2796 -6.46 0.8769 0.9872

For each study site, the means of the highest simulated precipitation depths [mm h−1]
simulated from the best model structure as well their 5th and 95th percentiles were plotted
against their corresponding probability of exceedance. The same was done for the ob-
served values. The observed values were within confidence bounds for Kelchsauer and
Gurglbach (Figure 11 and 12, while many were found just outside for the Ruetz catchment
(Figure 10).
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Figure 10. The highest precipitation depths [mm h−1] from each month for Ruetz plotted
against its probability of exceedance. Simulated values are represented by a red ’*’, and
their 5th and 95th are represented by a black dot ’o’ while observed hourly values are
visualized as blue diamonds.

Figure 11. The highest precipitation depths [mm h−1] from each month for Kelchsauer
plotted against its probability of exceedance. Simulated values are represented by a red
’*’, and their 5th and 95th are represented by a black dot ’o’ while observed hourly values
are visualized as blue diamonds.
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Figure 12. The highest precipitation depths [mm h−1] from each month for Gurglbach
plotted against its probability of exceedance. Simulated values are represented by a red
’*’, and their 5th and 95th are represented by a black dot ’o’ while observed hourly values
are visualized as blue diamonds.

4.3.2 Disaggregation models with weather generated data as input
The most efficient model structures of the method of fragments models were used to esti-
mate design precipitation depths with return period T=10, 20 and 50 years with the weather
generated data as input. These values were estimated using 100 years of extrapolated syn-
thetic data to evaluate the reproduction of unobserved extremes. The same procedure was
done for the microcanonical model with uniform splitting.

The two different disaggregation models simulate different design precipitation depths
(Figure 13). The method of fragments model is most similar to the observed extremes.
Another big difference between the two models is the variance which is bigger for the
microcanonical model (Table 6).

Table 6. A comparison of the reproduction of conventional statistics for Ruetz simulated
by the two dissaggregation models.

Statistics Observed MOF MICRO Unit
Mean µ 0.133 0.135 0.135 mm h−1

Variance σ2 0.276 0.311 0.400 mm2 h−2

Dry ratio 0.797 0.830 0.836 -
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Figure 13. A probability of exceedance for Ruetz. Values in the color cyan represent
simulated data from the microcanonical model while the red data points are simulations
from the method of fragments model.

The simulated design depths from the two disaggregationmodels are more alike for Kelch-
sauer, the catchment withmost available precipitation data. The twomodels simulated P50
is approximately the same. However, the observed precipitation depth for P20 is higher
than the P50s estimated by the two models (Figure 14). Again, the biggest difference
between conventional statistical parameters is the difference between the two models’
simulated variance which is bigger for the microcanonical model (Table 7).

Table 7. A comparison of the reproduction of conventional statistics for Kelchsauer sim-
ulated by the two dissaggregation models

Statistics Observed MOF MICRO Unit
Mean µ 0.1571 0.1566 0.1566 mm h−1

Variance σ2 0.4197 0.4444 0.4706 mm2 h−2

Dry ratio 0.8043 0.8080 0.8223 -
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Figure 14. A probability of exceedance for Kelchsauer. Values in the color cyan represent
simulated data from the microcanonical model while the red data points are simulations
from the method of fragments model.

For Gurglbach, the simulated precipitation depths from the two disaggregation models are
most alike compared to the results of the other catchments (Figure 15).

Figure 15. A probability of exceedance for Gurglbach. Values in the color cyan represent
simulated data from the microcanonical model while the red data points are simulations
from the method of fragments model.
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Also here, the biggest difference in the conventional statistics is the difference between
the two models simulated variance which is bigger for the microcanonical model (Table
8).

Table 8. A comparison of the reproduction of conventional statistics for Gurglbach simu-
lated by the two dissaggregation models

Statistics Observed MOF MICRO Unit
Mean µ 0.1101 0.1100 0.1100 mm h−1

Variance σ2 0.2626 0.2835 0.3283 mm2 h−2

Dry ratio 0.8754 0.8769 0.8840 -

4.4 TEMPERATURE DISAGGREGATION
4.4.1 Temperature Disaggregation With Observed Data
The sum of the residuals from the mean of 15 simulations with the temperature disag-
gregation algorithm shows that the disaggregation of temperature decrease the residuals,
| T − T ′ |, by 39% compared to residuals between observed and daily averaged values,
| T − Tµ | for Gurglbach. The average temperatures were calculated as the sum of 24
observed aggregated hourly values which were then divided by 24 to get the average. The
sum of the residuals for the daily averages shows that this leads to an average error of 2.98
◦C for every individual hourly value while the error for the disaggregation model was 1.82
◦C for every single hourly value for the Gurglbach catchment. Furthermore, temperature
disaggregation for Ruetz was not as successful. In fact, the two percent decrease in the
sum of the residuals for the Ruetz catchment, were overshadowed by big differences for
individual days (something compensated for by running the model 10 times for the Gur-
glbach and Kelchsauer catchments) (Table 9).

Table 9. A summary of the results obtained when disaggregating observed temperature
(◦C on hourly resolution) series.

Catchment µobs [◦C] µsim [◦C] µave [◦C] σ2
obs σ2

sim σ2
ave 1-

∑
|T−T ′|∑
|T−Tµ|

Ruetz 0.72 0.73 0.72 57.77 57.83 53.42 +0.02
Kelchsauer 6.64 6.64 6.64 76.01 76.10 62.71 +0.42
Gurglbach 6.91 6.92 6.91 80.35 78.42 65.63 +0.39

In Figure 16 it can be seen that the temperature disaggregation model outperforms hourly
averages of temperature leading to smaller residuals (bottom graph) for the Kelchsauer
and the Gurglbach study site. The temperature disaggregation did not decrease the sum of
the residuals for Ruetz at the same magnitude seen for the other two catchments. The two
graphs are a visualization from the results for the Gurglbach catchment. Similar results
were observed when disaggregating temperature for Kelchsauer.
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Figure 16. Temperature disaggregation with observed data series for Gurglbach. The blue
data points represent observed hourly values, while yellow are daily averages and red data
points represent simulated values.

4.4.2 Temperature disaggregation influence in the HBV model
To evaluate the need for temperature disaggregation, daily averages and disaggregated
temperature series for Gurglbach andKelchsauer were compared with the results seen with
observed hourly values. In Ruetz, the only performed comparison was between observed
hourly temperature (the original input for the validation period) and the hourly averaged
temperature series. The impact on the value of the objective function was rather small de-
spite the big decrease in the sum of the residuals for Kelchsauer and Gurglbach (Table 10).

However, the impact of temperature disaggregation and the use of mean values on the
discharge peaks in the HBVmodel, was bigger than the influence of the objective function.
As can be seen in Table (10), the impact on the highest simulated flowQ1Td, as well as on
the 5th highest simulated flow Q5Td was considerable with differences up to almost 16 %
for a temperature series with daily averages compared to a difference of 5 % when using
disaggregated data for the same period. The simulations were applied on the validation
period for each catchment in the HBV model.
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Table 10. The results from historic observations were compared with the results from
using disaggregated temperature data, Td, and hourly temperature mean values, Tµ, as
input in the HBVmodel. The values in the table are unitless since the represent percentual
differences from the value of the objective function and peak discharges.

Statistics Ruetz Kelchsauer Gurglbach
Reff Tobs 0.8104 0.7089 0.6908
Td ∆% - 0.2 % 0.35%
Tµ ∆% 0.83% 9.11% 0.90%
Q1Td ∆% - -1.19% +5.1%
Q1Tµ ∆% -10.48% +7.12% +15.57%
Q5Td ∆% - -1.23% +4.49%
Q5Tµ ∆% -12.05% +7.26% +13.77%

4.4.3 Temperature disaggregation with weather generated data
Temperature disaggregation was further attempted for Gurglbach with the weather gen-
erated temperature series. These temperature series were conditioned to rainfall in the
weather generation process and comprised equal amounts of data, i.e., 25 realizations of
100 years of daily temperature.

Figure 17. Temperature disaggregation with observed data series for Gurglbach. The blue
data points represent daily averages and red data points represent simulated values.

5 DISCUSSION
5.0.1 Frequency analysis
As been evidenced in earlier studies, frequency analysis is practical and simple to do, but
is limited when it comes to estimate and model extremes beyond the conditions of the
sample series. Moreover, it does not provide any information on the processes that gave
rise to the observed maximum flows (Merz & Blöschl, 2003; Moran, 1958; Chow et al.,
1988). The same results were obtained in this study. In Figure (4) it can be seen that the
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estimated 50 year design flood for Ruetz varies between approximately 100 – 300 [m3s−1]
for the different applied distributions. Furthermore, the results are not improved with
more data (see the results for Kelchsauer and Gurglbach). In fact, even if the confidence
bounds between different distributions are constrained for Kelchsauer and Gurglbach in
comparison with Ruetz, the observed data points for bigger return periods are far from the
simulations. These results strengthen the need for more physical methods that are closer
to understanding the physical causes of floods so that more reliable projections can be
made.

5.0.2 HBV
As thoroughly described by Seibert (1997) there are many uncertainties related to cali-
bration of a hydrological conceptual model. Due to errors in model structure, observed
variables and interactions between different parameters, it is hardly possible to find a
unique, “true”, parameter set. This was confirmed in this thesis where most parameters
were found to be uncertain i.e. not well-defined (something seen in other HBV studies
as well)(Seibert, 1997). The aim with a fuzzy measure (the LindstroemMeasure) when
using the automatic calibration tools available in HBV, was to constrain, hence decrease
the big uncertainty of the simulated parameters (Seibert, 1997). But even when using a
fuzzy measure, many of the calibrated parameters were seen to be highly uncertain (see
example of an uncertain parameter in Figure 2 Appendix B).

Many different parameter sets gave equally good fits according to Reff (parameters from
200 000 Monte Carlo simulations). However, it is not certain that the different parameter
sets would have resulted in the same runoff projections. Therefore, as was planned, it is
very much motivated to use dissimilar parameter sets to account for the equifinality to
justify design flood modeling with the HBV model (Beven & Freer, 2001; Seibert, 1997).

One parameter that in general was different from the reference values (Bergström, 1990;
Seibert, 1997), was the parameter PCALT , whose ranges had to be extended consid-
erably. This is most certainly related to the altitude of the gauges and the mountainous
environment from which they collect precipitation and can therefore be justified. How-
ever, this parameter is not always displayed in studies referred to, something complicating
a comparison (Breinl, 2016). Furthermore, the sensitivity analysis shows that changes in
parameters related to the snow routine had a big impact on the objective function. This is
also motivated since snow is a great determining factor of hydrology in the Alps (Vanham
et al., 2008).

In the calibration and validation plots simulated in the HBV light model (Figure 7, 8 and
especially Figure 9), the discharge peaks are constantly underestimated for all three study
catchments. This highlights the complex process of calibration, where the fit according
to an objective function can be sufficient even though, as in this case, peaks are not well
defined.

To get an understanding on why these peaks were underestimated, the raw data was an-
alyzed for the dates of some discharge peaks without finding any general pattern. It is
much like Merz & Blöschl (2003) put it, understanding the physical processes behind a
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flood of a given probability may be one of the most intriguing questions of catchment hy-
drology and not an easy one to answer. The underestimation error would have influenced
the projections. However, even though the errors are considerable, the error was to some
extent assessed, since validation was performed on an independent time interval (Seibert,
1999a). It is thus suggested to try other objective functions more focused on the discharge
peaks for future studies to increase confidence in the modeling.

The choice of the Thornthwaite method for estimating PET may also introduce uncertain-
ties. However, as concluded by Oudin et al (2005), it is not assured that more complex
methods improve projections. The use of elevation zones in the HBV model is another
area where errors can be introduced. Here, it was considered motivated since it improved
the fit to the objective function considerably.

5.0.3 Precipitation disaggregation
Themethod of fragmentsmodel was assessed on its ability to reproduce observed extremes
and conventional statistics. This first test was done with observed hourly time series as
well as daily time series constructed from the hourly. For the study areas with more data
available, i.e., Kelchsauer and Gurglbach, model results were seen to have most resem-
blance with their observed counterparts. The majority of data points in the probability
of exceedance plots (Figure 10), i.e., the extremes for Kelchsauer and Gurglbach, were
within confidence bounds. On the other hand, many of the simulated precipitation ex-
tremes for Ruetz were just outside the confidence ranges. In general, these results seem to
be in line with other studies where similar findings have been published (Pui et al., 2009;
Westra et al., 2012).

These results were then used to assess the performance when using 100 years of gener-
ated weather data as input into the models. The microcanonical model produced bigger
precipitation amounts in comparison with the method of fragments model. This was to
be expected, since the method of fragments model tries to reproduce observed precipi-
tation (Pui, et al., 2009). Some of the observed probability of exceedances fell within
the confidence boundaries for the method of fragments model, while all were outside the
boundaries when simulated with the microcanonical model (Figure 13, 14, 15). These
patterns are strenghtened in Müller & Haberlandts’ study (2015), who found that their
microcanonical model slightly overestimated precipitation extremes.

The performances of the two models seemed to be more alike for the two catchments with
more data (Kelchsauer and Gurglbach). For these two catchments, the confidence ranges
are constrained in comparison with the results for Ruetz. Moreover, the estimated pre-
cipitation depths are comparable between the two model approaches for Kelchsauer and
Gurglbach. This is especially demonstrated with the simulated precipitation depth with
50 a year return period (P50) for Kelchsauer (Figure 14) where the two models estimated
approximately the same depths. A difference between the two models for the simulated
P50 in all catchments, is that the confidence ranges seem slightly more constrained for the
microcanonical model.

The two models also seemed to preserve conventional statistics seen in the observed time
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series (Müller & Haberlandt, 2015; Pui et al., 2009) even if 100 years of extrapolated
weather data were used as input. The method of fragments model simulated precipitation
with statistics that are more alike observed events in comparison to the microcanonical
model apart from the mean, where the two models had similar results.

Determining the most efficient structure for the method of fragments model was done by
looking at the score out of four different criterions. Many structures produced results with
similar statistics, especially if the variance is excluded. The biggest difference between
variables simulated with the most efficient and least efficient structure was 6.3 % for the
variance in Gurglbach. However, in general differences were much smaller even for the
variance. As the parameters for the model is determined to account for seasonality and
to avoid disproportionate biases when disaggregating extreme events (Westra et al., 2012;
Pui et al., 2012), it is not motivated to try more structures.

As described in the theory section of the method of fragments algorithm, the model does
not necessarily maintain dependence across days for storm events. The correlation in rain-
fall between the 24th hour of the previous day and the first hour of the current day may
therefore be compromised (Pui et al., 2012). As this affects antecedent conditions, it is
noteworthy and something to consider if disaggregated data are to be used for flood mod-
eling.

A big uncertainty related to the disaggregation procedure is the number of model runs,
i.e., the number of realizations to simulate for every single weather generated data series.
Disaggregation is a random process since each run of the model allows choosing up to
10 different nearest neighbors. To account for this random behavior, a sufficient amount
of disaggregation runs need to be performed to get stable values (Müller & Haberlandt,
2015). The biggest uncertainty was related to the greatest precipitation depths simulated
by the model. It was shown that 15-25 runs of the model seemed to make mean values
of the produced statistics converge, however, no significance test was performed to assess
these differences. This is a limit that is motivated to account for in future studies.

5.0.4 Temperature disaggregation
Temperature disaggregation was shown to reduce residuals considerably in comparison
with using daily averages as hourly values for Kelschauer and Gurglbach. For Ruetz, the
same results could not be achieved for unknown reason, especially since the length of the
temperature series for the three catchments were similar (16-18 years). Using a tempera-
ture disaggregation approach conditioned to rainfall strengthened by relationships between
the two atmospheric variables (Richardson, 1981), seems promising according to the re-
sults of this study. However, due to time constraints, a proper literature study, assessment
and analysis of the temperature disaggregation model was not feasible.

Some temperature disaggregation simulations were made with the generated weather data.
These preliminary test scores seem optimistic even though there are problems with the
temperature of individual days being unrealistically high in comparison with observed
temperatures of that time interval. This is probably the result of big differences between
the nearest neighbors |Tj−Tt| leading to big differenceswhenmultipliedwith theTempRatioi,m
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vector. A tool to cut outliers is suggested to be implemented in the temperature disaggre-
gation to disable the possibility for unrealistic temperatures.

In Table 10 it is demonstrated that the highest discharge peak modeled with disaggregated
temperature data for Gurglbach was 10.47% closer to simulations performed with historic
data in comparison with using temperature averages as input. An improvement, 5.93%,
was also seen for the simulations performed in Kelchsauer with disaggregated tempera-
ture data. Simulations depend on the quality of the input data. If improvements can be
made so that the temperature data is more similar to observed values (approximately 40 %
smaller residuals in comparison with daily averages, see Table 9), this is motivated since
the framework as a whole is associated with many uncertainties. The aim must be to re-
duce all the errors so that the framework is as realistic as possible.

5.0.5 Modeling Framework
To test the modeling framework as a whole, one disaggregated precipitation realization to-
gether with the corresponding hourly temperature series with hourly averages were used
as input in the HBV model. The long term mean monthly temperature and potential evap-
oration used for the calibration and validation procedure in the HBVmodel were also used
here to enable comparison between the results. 100 years of hourly data equals 876,000
data points for each variable (T, P). To account for equifinality, all of the 100 realizations
from each study area (50 realizations produced by the method of fragments model and 50
from the microcanonical model) were going to be simulated with 100 suitable but different
parameter sets simulated from 200 000 Monte Carlo runs. In HBV light, simulations with
many different parameter sets is possible with the tool ”batch runs”. However, when this
was practiced in the HBV model, it almost immediately crashed due to a transcendence
of simulated data points (87,600,000 runoff simulations). When batch runs were tried for
a smaller interval, just to test the model framework, the program displayed an error with
the input files. This error was not solved during the end phase of the thesis.

A big advantage with the proposed modeling framework is as mentioned before; that cou-
pling of weather generation with hydrological modeling allows for impact assessment on
changing land use and climate conditions (Bergström et al., 2001; Booij, 2005; Breinl,
2016), something that is not possible with frequency analysis. The framework also at-
tempts to tackle challenges with inadequate data series (too short and with insufficient
resolution) (Müller &Haberlandt, 2015; Westra et al., 2012; 2013; Kobold & Brilly, 2006;
Pui et al., 2009).

Another proposed benefit of using a conceptual runoff model as an alternative to frequency
analysis with distribution fitting, is the closer understanding of the physical processes of
the catchment hydrology (Lindström et al., 1997; Seibert, 1999a, 1999b, 2012). As seen
here and elsewhere, extrapolation with distribution fitting performs badly beyond the con-
ditions of the sample (Merz & Blöschl, 2003; Moran, 1958; Chow et al., 1988).

However, there are many uncertainties related to the modeling framework as well. First of
all, the weather generation process involves curve fitting (Breinl et al., 2013). The same
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goes for the microcanonical model with uniform splitting when precipitation volumes are
distributed according to Wx/x, where x is associated with a certain probability distribu-
tion (Olsson, 1998; Müller &Haberlandt, 2015; Güntner et al., 2001). Themicrocanonical
model has also been seen to overestimate extremes (Müller & Haberlandt, 2015). Another
uncertainty is that storm events crossing days may be redistributed so that these conditions
are altered. There are also uncertainties related to measurements of precipitation intensity
and duration. Since precipitation data is one of the main inputs in the HBV model, this
may have a significant effect on the flood modeling (Habib et al., 2001). The preliminary
tests of temperature disaggregation show that disaggregating temperature results in simu-
lations of discharge peaks with more resemblance to historic observations in comparison
with using daily temperature averages as input in the HBV model.

The HBV model, the last model of the framework, may introduce big errors. The choice
of model structure determines the number of parameters, where a more complex model
structure introduces more uncertainty. The use of elevation zones adds complexity to the
model and the method to calculate potential evapotranspiration can lead to different esti-
mations which may influence runoff simulations. Many parameters are highly uncertain,
hence a big range of values was seen to result in equally good fits according to the objec-
tive function meaning that many parameter sets may be used for simulation which could
lead to different estimations of design floods. Different choices of objective function may
also lead to dissimilar results.

Themany elements of themodeling framework is another source of complexity that makes
it hard to quantify the uncertainties of the whole framework. However, the framework as
a whole attempts to understand the physical causes leading to a flood of certain return
period as well as to understand how changes in weather data and changes in land-use
and climate can alter runoff. It also tackles challenges with insufficient data amounts
and resolution. The trade off between introduced uncertainties in comparison with the
many applications provided by the framework motivates further research, especially as an
alternative to frequency analysis.
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6 CONCLUSIONS
• Frequency analysis for design floods estimation is straightforward but shown to be
uncertain in this study. It does not give any information on antecedent conditions or
on causes of the floods. It is not applicable for land use and climate change studies.
It does not solve issues with scarce data series or data series at coarse temporal
resolution.

• The method of fragments model is non-parametric, has few parameters and is shown
to reproduce observed precipitation extremeswithin confidence boundaries for Kelch-
sauer and Gurglbach. The results are better when more data is available, indicating
that the model is data driven. The model can be used for temperature disaggrega-
tion with slight changes, something that from preliminary tests seems to improve
hydrological simulations in comparison with using temperature averages.

• The two disaggregation models used in this study can produce high resolution pre-
cipitation data which can be used as input in the HBV model to estimate design
floods. The difference between the disaggregation models was bigger when smaller
amounts of historic high resolution data was available. Simulations with the method
of fragments model reproduce precpitation extremes with more resemblance to his-
toric observations in comparison with the microcanonical model. The reproduction
of precipitation variance and the proportion of wet spells simulated with weather
generated precipitation is also closer to observations with the method of fragments
model in comparison with the microcanonical model.

• There are many uncertainties related to the modeling framework and it is complex in
comparison with frequency analysis. The weather generator uses theoretical prob-
ability distributions for simulating precipitation amounts and occurrence, the dis-
aggregation models are data driven, the parameters of the HBV may be uncertain
and difficult to estimate, which in combination with the choice of objective function
influence the modeling of discharge peaks. However, the framework is closer to a
physical understanding of the causes behind floods and it is applicable for land-use
and climate change studies. It is also positive since it attempts to solve problems
related to data scarcity.
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APPENDIX
APPENDIX A: HBV PARAMETER REFERENCE VALUES

A 1. The initial parameters and their ranges used for the Monte Carlo simulations used in
the HBV model

Parameter Explanation Min Max Unit
Snow Routine
TT Threshold temperature -0.5 1.5 ◦C
CFMAX Degree-day factor 0.05 0.2083 mm ◦C−1 h−1

SFCF Snowfall correction factor 0.6 1.5 -
CFR Refreezing coefficient 0.05 0.05 -
CWH Water holding capacity 0.1 0.1 -

Soil& evaporation
Routine
FC Maximum soil moisture 100 300 mm
LP Soil moisture threshold for 0 1 -

reduction of evaporation
Beta Shape coefficient 0.01 4 -
Groundwater&
response routine
K0 Recession coefficient 0.0033 0.02916 h−1

K1 Recession coefficient 0.00083 0.02083 h−1

K2 Recession coefficient 8.33E-05 0.00083 h−1

UZL Threshold for K0-outflow 8 70 mm
PERC Maximal flow from upper 0 0.2083 mm h−1

to lower GW-box
MAXBAS Routing, length of 1 60 h

weighting function
Other
CET Potential evaporation 0 0.3 ◦C−1

correction factor
PCALT Change of precipiation 10 18 % 100−1 m−1

with elevation
TCALT Change of temperature 0.6 0.6 % 100−1 m−1

with elevation
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APPENDIX B SENSITIVITY ANALYSIS
Here are a few example plots from the parameter uncertainty test. For well defined pa-
rameters, a distinct peak can be found (Figure B 3) while more uncertain parameters looks
more like the results for the parameter CFMAX where many parameter values give the
same fit (Figure B 2).

B 1. Uncertainty plot for the parameter SFCF, the snow correction factor and the Nash
objective function.

B 2. Uncertainty plot for the parameter CFMAX, the snow degree day factor and the Nash
objective function.
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B 3. Uncertainty plot for the parameter PCALT which control differences in precpitation
in relation to altitude and the Nash objective function.
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