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ABSTRACT

Modelling of algae based wastewater treatment – Implementation of the River Water Quality 
Model no. 1

Rasmus Pierong

The conventional wastewater treatment of today was developed aiming to mitigate problems occurring 
in wastewater recipients such as oxygen depletion and eutrophication. The focus of wastewater 
management has however broadened and major concern is now focused on the sustainability of the 
wastewater treatment process itself. Algae based wastewater treatment is an alternative to conventional 
treatment. It has the potential to yield an acceptable effluent quality at a lower ecological cost.

This Degree Project was conducted as part of MOBIT, a project at Mälardalen University. The MOBIT 
project was aimed at the development of an algae based wastewater treatment process in an activated 
sludge environment. The aim of this Degree Project was to propose a model describing the dynamics of 
such a system. The model was constructed in Simulink, based on the River Water Quality Model no. 1. 
The River Water Quality Model no. 1 was chosen as the basis for modelling because it included the 
state variables and processes necessary to describe the dynamics of bacteria, algae and pH.

The River Water Quality Model no. 1 was, as the name suggests, developed to describe a river system. 
It was hence considered important to evaluate if the model was applicable to an activated sludge 
environment. A major obstacle was the fact that no algae based activated sludge system had been 
studied prior the start of the MOBIT project, the project was pioneering. The lack of system 
understanding and of measurement data aggravated the evaluation. However, the proposed model was 
compared to the Activated Sludge Model No. 1 which was known to describe an activated sludge 
system accurately.

The model structure of the River Water Quality Model no. 1 was considered a good starting point for 
future modelling of the algae based activated sludge process. However, the model set-up proposed in 
this report does not describe the system sufficiently well. Better system understanding and 
measurement data is needed in order to develop and calibrate the model.
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REFERAT

Modellering av algbaserad avloppsvattenrening – Implementering av River Water Quality Model 
no. 1

Rasmus Pierong

Dagens konventionella avloppsvattenrening har utvecklats för att minimera utsläpp av näringsämnen 
och kolföreningar då sådana utsläpp medför övergödning och syrebrist i mottagande vatten. På senare 
tid har reningsprocessen i sig hamnat i fokus då den är såväl energi- som resurskrävande. Algbaserad 
avloppsvattenrening är ett alternativ som har potential att ge tillfredsställande rening med ett betydligt 
mindre ekologiskt fotavtryck. 

Det här examensarbetet var en del av MOBIT, ett projekt vid Mälardalens högskola. MOBIT syftade 
till att utvärdera algbaserad avloppsvattenrening i form av en aktivslamprocess. Syftet med 
examensarbetet var att ta fram en modell för det planerade systemet. Modellen byggdes i Simulink och 
den baserades på en befintlig modell, River Water Quality Model no. 1. Den befintliga modellen valdes 
för att den inkluderade alla önskvärda tillståndsvariabler och processer, bland annat de som krävs för 
att beskriva alg-, bakterie- och pH-dynamik. 

Som namnet antyder utvecklades River Water Quality Model no. 1 för att beskriva ett flodsystem. Det 
var därför angeläget att utvärdera huruvida modellen var tillämpbar i en aktivslammiljö. Utvärderingen 
försvårades av att det vid tiden för examensarbetets utförande ännu inte fanns någon existerande 
algbaserad aktivslamprocess. Kunskapen om systemet var därför begränsad och det fanns ingen 
mätdata att kalibrera eller evaluera mot. I brist på mätdata jämfördes den framtagna modellen med en 
annan modell som var utvecklad för att beskriva just avloppsvattenrening, Activated Sludge Model 
No. 1. 

Arbetet resulterade i slutsatsen att River Water Quality Model no. 1 utgör en bra grund för modellering 
av den algbaserade aktivslamprocessen. Men, den modellkonfiguration som tas fram i denna rapport 
beskriver inte systemet särskilt bra. Bättre systemförståelse samt tillförlitlig mätdata krävs för att 
omarbeta och kalibrera den föreslagna modellen.

Nyckelord: alger, avloppsvattenrening, aktivslamprocessen, modellering, RWQM1, ASM1.
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POPULÄRVETENSKAPLIG SAMMANFATTNING

Modellering av algbaserad avloppsvattenrening – Implementering av River Water Quality Model 
no. 1

Rasmus Pierong

Dagens konventionella avloppsvattenrening har utvecklats för att minimera effekterna av de problem 
som avloppsvatten ger upphov till i mottagande ekosystem. Reningsverken har utvecklats i takt med att 
nya problem har uppmärksammats. På trettiotalet byggdes sedimentationsanläggningar och mekaniska 
hinder för att minska utsläppen av synliga föroreningar. Tjugo år senare kopplades det växande 
problemet med syrefria bottnar samman med utsläpp av organiskt material. För att minska utsläppen 
infördes biologisk rening, den så kallade aktivslamprocessen. Aktivslamprocessen bygger på att den 
bakteriekultur som naturligt finns i avloppsvatten gynnas genom att vattnet får passera en syresatt 
bassäng och en sedimentationsanläggning i vilken bakterierna faller till botten för att sedan återföras till 
den syresatta bassängen. På så sätt upprätthålls en hög bakteriekoncentration i en syrerik miljö där 
bakterierna aktivt bryter ner organiskt material. Trots att aktivslamprocessen medförde lägre utsläpp av 
organiskt material så återstod ofta problemen med syrefria bottnar. Orsaken var de växande 
fosforutsläppen. På sjuttiotalet började man därför fälla ut fosfor med hjälp av fällningskemikalier så 
som aluminiumsulfat och järnsulfat. Den sista större förändringen av svensk avloppsvattenrening 
genomfördes på nittiotalet för att minska kväveutsläppen då kväve bidrar till övergödning i delar av 
Östersjön och i större hav. Kväverening utförs vanligen genom nitrifikation och denitrifikation, två 
processer som tillsammans gör att kvävet omvandlas till gasform och går ut i atmosfären. På senare tid 
har fokus riktats mot själva reningsprocessen och de nackdelar som konventionell avloppsvattenrening 
medför. Mycket energi går åt då avloppsvattnet syresätts och det kväve som renas bort från 
avloppsvattnet släpps ut i atmosfären istället för att omhändertas och användas som gödsel. Algbaserad 
avloppsvattenrening utgör ett alternativ till den konventionella avloppsvattenreningen. Ett alternativ 
som kan ge önskad reningsgrad till ett mindre ekologiskt fotavtryck. Tanken är att algerna ska 
producera syre vilket minskar behovet av mekanisk syresättning. Dessutom ska deras stora 
näringsupptag ersätta den konventionella kvävereningen. På så sätt kan kvävet tillvaratas som gödsel. 

Det här examensarbetet var en del av MOBIT, ett projekt vid Mälardalens högskola. Syftet med 
MOBIT var att utvärdera en algbaserad aktivslamprocess och i projektet ingick bland annat 
uppförandet av en pilotanläggning. Syftet med examensarbetet var att ta fram en modell för den 
planerade aktivslamprocessen. Modellen skulle beskriva hur pH-värdet och koncentrationen av bland 
annat alger, bakterier och näringsämnen varierar i systemet, och den skulle ligga till grund för vidare 
utveckling inom MOBIT. Den modell som togs fram baserades på en existerande modell vid namn 
River Water Quality Model no. 1. Denna var egentligen framtagen för att beskriva ett flodsystem men 
den innehöll samtliga komponenter som ansågs nödvändiga för att beskriva en algbaserad 
aktivslamprocess och utgjorde därmed en bra grund. 

En viktig del av examensarbetet var att utvärdera den framtagna modellen. Utvärderingen försvårades 
av att det då examensarbetet genomfördes inte fanns någon pilotanläggning att ta mätdata ifrån eller att 
studera för ökad systemförståelse. I brist på mätdata utvärderades modellen genom jämförelser med en 
annan, inom den konventionella avloppsvattenreningen väl använd och accepterad, modell. Resultatet 
av examensarbetet visade att den framtagna modellen utgör en bra grund för fortsatt modellering men 
att bättre systemförståelse och bättre tillgång till mätdata krävs för vidare utveckling och kalibrering. 
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1 INTRODUCTION

Wastewater treatment is an important part of modern society and a prerequisite for a sustainable water 
usage. The role of wastewater treatment has continuously changed. Identification of new problems 
arising from wastewater pollution has changed the focus of the treatment process, increasing the 
complexity of treatment plants. The origin of western wastewater treatment has been attributed to 
Joseph Bazalgette in the middle of the nineteenth century (Chapra, 2011). He was the chief engineer of 
an extensive expansion of London's sewage system, a measure taken to tackle the huge sanitation 
problem referred to as “The Great Stink of 1858”.

The development of Swedish wastewater treatment from the time of Bazalgette until today may be 
summarized in four consequent landmarks in terms of treatment adaptations. These adaptations have 
been presented by Bernes and Lundgren (2009) and the remaining part of this text section is based on 
their work. Mechanical treatment was introduced in the 1930s in order to solve problems with visible 
litter. In the 1950s, problems with oxygen depletion caused by high organic loads were mitigated by the 
introduction of the biological wastewater treatment known as the activated sludge process. However, it 
was soon found that problems with oxygen depletion often remained after the introduction of biological 
treatment. This was due to the emergence of extensive algal blooms coupled to oxygen consuming 
decay processes. The algal blooms were caused by the increasing phosphorous eutrophication. 
Chemical precipitation, for example iron sulphate or aluminium sulphate, was introduced in the 1970s 
in order to reduce the phosphorous concentration of the treated wastewater. This measure was found to 
function well in that the phosphorous concentration of many recipients decreased, as did the extent of 
algal blooms. The last major adaptation of Swedish wastewater treatment was the introduction of 
nitrogen removal. It was done in the 1990s aiming for mitigation of the nitrogen eutrophication 
occurring in the Baltic Sea and in larger oceans. 

All adaptations described above was conducted to improve the water quality of wastewater recipients. 
The focus of wastewater treatment management has however broadened. Major concern is now focused 
on the sustainability of the wastewater treatment process itself. Conventional wastewater treatment has 
several drawbacks such as the extensive usage of precipitation chemicals, energy and external carbon. 
Energy is consumed in the activated sludge process while external carbon is used in the process of 
nitrogen removal. Nitrogen is removed through nitrification and denitrification. These processes are 
thoroughly described in literature, for example by Svenskt Vatten (2010). The activated sludge process 
requires an aerobic environment which is obtained through energy intensive aeration (Svenskt Vatten, 
2010). The process of denitrification requires suspended carbon which can be provided through the 
injection of external carbon (Svenskt Vatten, 2010). However, the usage of external carbon depends 
upon the configuration of the wastewater treatment plant. Some configurations do not require injection 
of external carbon while other do. Another major drawback with conventional wastewater treatment is 
the loss of potentially valuable nutrients (Noüe, Laliberté and Proulx, 1992). Nitrogen is emitted to the 
atmosphere through the processes of nitrification and denitrification.

Algae based wastewater treatment is an alternative to conventional wastewater treatment. The method 
has been investigated for more than 50 years, it is well documented and overviews have been provided 
by Hoffmann (1998) and Noüe, Laliberté and Proulx (1992). Algae based wastewater treatment has the 
potential to circumvent several of the problems encountered in conventional wastewater treatment. The 
oxygen that is produced during algal photosynthesis reduces the need for energy intensive aeration. It 
might even make the aeration redundant. Carbon dioxide is consumed during photosynthesis. Hence, an 
algae based wastewater treatment plant may potentially work as a carbon dioxide sink mitigating global 
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warming. It has been shown that algae based wastewater treatment is sufficient for high level 
reductions of organic matter, nitrogen and phosphorous, as discussed by Hoffmann (1998). The large 
nutrient uptake of algae may replace the usage of chemical precipitation and the processes of 
nitrification and denitrification. This would make the extensive usage of precipitation chemicals and 
external carbon redundant. Also, the sludge produced in an algae base wastewater treatment process 
would be rich in both nitrogen and phosphorous, and hence a potentially valuable fertilizer. 

This study was conducted as part of MOBIT, a project at Mälardalen University. The MOBIT project 
was aimed at the development of an algae based wastewater treatment process in an activated sludge 
environment. This type of algae based wastewater treatment configuration had not been investigated 
before and the MOBIT project was hence pioneering.

1.1 AIM OF STUDY

The overall aim of this thesis was to propose a model describing the dynamics of an algae based 
wastewater treatment process in an activated sludge environment. The model was to form the basis for 
future modelling aimed at control and operation strategy analyses within the MOBIT project. 

The model was supposed to include pH dynamics. It was also supposed to be based on an existing and 
acknowledged model, preferably the Activated Sludge Model No. 1 (ASM1) as presented in section 
3.1. However, pH dynamics are complex. They are governed by several processes such as the chemical 
equilibria of, inter alia, carbon dioxide-bicarbonate, bicarbonate-carbon trioxide, and ammonium-
ammonia. A model must hence be relatively large in order to describe pH dynamics accurately. ASM1 
only includes a fraction of the state variables necessary for estimating the pH value. It was hence 
considered infeasible to use that model as a starting point for the model development of this study.

The River Water Quality Model no. 1 (RWQM1), presented in section 3.3, includes all state variables 
and processes needed to describe both pH dynamics and algae dynamics. It was hence considered to be 
a feasible starting point for the model development of this study. However, it should be emphasized that 
RWQM1 was developed to describe the dynamics of a river system and not an activated sludge 
process.

The overall aim was condensed to the implementation of an algae based activated sludge model in 
Simulink, based on RWQM1. It was considered important to investigate how well this model set-up 
mimicked the system dynamics of an activated sludge process, given the fact that it was developed to 
describe a river system. The bacterial dynamics of the proposed model set-up was to be compared to 
the bacterial dynamics of ASM1. The proposed model set-up was also to be adjusted and calibrated in 
order to increase the consistency with ASM1. 
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2 THEORY

2.1 MODELLING OF WASTEWATER TREATMENT SYSTEMS

2.1.1 State variables and their derivatives

The core of a wastewater treatment model consists of a set of state variables, one for each component 
that is to be modelled. A state variable may for example represent the concentration of bacteria, the 
concentration of biodegradable substrate or the concentration of dissolved oxygen. The number of state 
variables included in a specific model varies depending on the application domain of that model. 
Examples of state variables are found in Table 4 and Table 6.

Wastewater treatment models are used to describe system dynamics in terms of the change of state 
variables. They must hence include routines for the calculation of state variable derivatives. These 
routines differ depending on application domain. The derivatives of a model describing the dynamics of 
an isolated water basin will depend upon biochemical processes alone. The derivatives of a model 
describing the dynamics of a water basin subject to in- and outflow will depend upon both biochemical 
processes and mass transports.

Mass transports are calculated according to 

dS
dt

=
S in⋅Qin

V
−

S⋅Qout

V
=

Q
V

⋅(S in−S ) (1)

with S as the concentration of the subject state variable, Q as the flow magnitude, index in denoting the 
inflow, index out denoting the outflow and V denoting the basin volume. The inflow magnitude is 
assumed to equal the outflow magnitude.

Biochemical processes appear in many different forms. State variables representing living organisms 
such as bacteria, algae or zoo-plankton are often described as governed by the processes of growth, 
death, respiration, grazing and predation. The growth process is usually represented as a specific 
growth rate multiplied by the concentration of the subject state variable according to 

dS
dt

= μ⋅S. (2)

The specific growth rate is usually defined as a function of the maximal specific growth rate μmax and 
several factors limiting growth according to 

μ = μmax⋅∏
i=1

N

f ( si) (3)

with N as the total number of limiting factors and f(si) defining to what extent factor si limits growth. 
Light intensity and temperature are examples of limiting factors. The concentration of biodegradable 
matter, inorganic phosphorous, inorganic nitrogen and dissolved oxygen are other examples. The 
function that defines how much a limiting factor affects the growth rate can take many different forms. 

A commonly used function is the Monod function. It is defined as

f (si) =
si

K s+s i
(4)
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with si as the value of the limiting factor and KS as the half saturation coefficient. Some other functions 
are presented in sub-section 2.2.1. 

2.1.2 The activated sludge process

The activated sludge process is an important part of modern wastewater treatment. It consists of a water 
basin followed by a sedimentation unit in which heavier particles settle. This configuration enables 
recirculation of sludge and the extraction of a relatively clean effluent (Figure 1). A central variable in 
wastewater management is the average retention time of a sludge particle, referred to as the sludge age. 
It must be relatively high in order to avoid washout of bacteria, in particular of the slowly growing 
autotrophs. It is possible to control the sludge age within the activated sludge process by adjusting the 
waste flow magnitude according to

θS =
V

2⋅Qw
(5)

with θS as the sludge age, V as the basin volume and Qw as the waste flow magnitude. This makes it 
possible to obtain a high sludge age even for a relatively small basin volume. Equation (5) should be 
used as a rule of thumb. It can be derived from the sludge age formula and the mass balance of the 
sedimentation unit. The sludge age formula is defined as

θS =
sludge in basin
sludge outtake

=
V⋅X

Qw⋅X w+Q e⋅X e
(6)

with X as the sludge concentration of the water basin, Xw as the sludge concentration of the waste flow, 
Xe as the sludge concentration of the effluent, and Qe as the magnitude of the effluent (Svenskt Vatten, 
2010). The mass balance of the sedimentation unit is defined as

(Qi+Q r)⋅X = Qr⋅X r+Qw⋅X w+Q e⋅X e (7)

with Qi and Qr as the magnitude of the inflow and the return flow, respectively, and Xr as the sludge 
concentration of the return flow (Figure 1). The derivation of equation (5) is based on the assumption 
that the sludge concentration of the effluent is zero, that the sludge concentration of the return flow 
equals the concentration of the waste flow and that the return flow magnitude equals the inflow 
magnitude.

It is important to consider the activated sludge process when constructing a wastewater treatment 
model. The magnitudes of the waste flow and the sludge recirculation affect the system dynamics and it 
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Figure 1. Basic description of the activated sludge process. Q represents flow magnitude. X and S 
represent the concentration of particulate matter (sludge) and soluble matter, respectively. Index i, r, e 
and w represent inflow, recirculation, effluent and waste, respectively. The concentration of soluble 
matter is not affected by the sedimentation unit.
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is often desirable to include them as model variables. The sedimentation unit may be modelled 
assuming ideal sedimentation according to which all particulate matter settle. The concentration of 
soluble matter is then assumed to be the same in all flow lines while the concentration of particulate 
matter in the return flow and in the waste flow is calculated according to 

X r = X w =
Qi+Q r

Qr+Qw

⋅X. (8)

Assuming ideal sedimentation is the least complex modelling approach. There are other approaches in 
which particulate matter may contaminate the effluent, see for example the sedimentation unit 
implemented within the Benchmark Simulation Model no. 1 (BSM1) as described by Alex et al. 
(2008b).

2.2 MODELLING OF ALGAE DYNAMICS

Several models describing the dynamics of algae based wastewater treatment systems have been 
proposed in literature. A literature study was conducted to examine how the algae dynamics of those 
models were described. The information was considered valuable for the model development of this 
study.

2.2.1 Factors limiting algal growth

Factors limiting algal growth in one system are not necessarily limiting in an other, as reflected in the 
models presented in sub-section 2.2.2. It is therefore crucial to consider the application domain of a 
model when deciding which limiting factors to include in that specific model. Algal growth may be 
limited by

1. inorganic carbon,

2. nitrogen,

3. phosphorous,

4. light intensity,

5. temperature, and

6. pH.

1. Inorganic carbon is consumed in the process of photosynthesis. Several models include carbon 
dioxide as the only form of inorganic carbon limiting algal growth (Banks, Koloskov, Lock and 
Heaven, 2003; Mashauri and Kayombo, 2002; Yang, 2011). However, Decostere et al. (2013) proposed 
a model in which both carbon dioxide and bicarbonate may be limiting. They argued that algae may 
consume both carbon dioxide and bicarbonate with preference for carbon dioxide. All studied models 
that included inorganic carbon as a limiting factor were based on the Monod function (Banks et al., 
2003; Decostere et al., 2013; Mashauri and Kayombo, 2002; Yang, 2011).

2. Nitrogen is a macro nutrient essential for algal growth. Different models include different forms of 
nitrogen as growth limiting factors. Wu et al. (2013) and Yang (2011) described algal growth as a 
function of total nitrogen. Reichert et al. (2001) described algal growth as a function of either 
ammonium and ammonia or nitrate, with preference for ammonium and ammonia. Sah et al. (2011) 
described algal growth as a function of either ammonium or nitrate, with preference for ammonium. 
Beran and Kargi (2005) described algal growth as a function of ammonium and nitrate. All studied 
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models that included nitrogen as a limiting factor were based on the Monod function (Beran and Kargi, 
2005; Reichert et al., 2001; Sah et al., 2011; Wu et al., 2013; Yang, 2011).

3. Phosphorous is like nitrogen a macro nutrient essential for algal growth. Algal growth has been 
modelled as a function of total phosphorous in algae biomass (Wu et al., 2013), phosphate in the water 
body (Beran and Kargi, 2005), and hydrogen phosphate and dihydrogen phosphate in the water body 
(Reichert et al., 2001). Wu et al. (2013) used the Droop function to describe algal growth as a function 
of phosphorous while Beran and Kargi (2005) and Reichert et al. (2001) used the Monod function. 
Usage of the Droop function has been motivated by the fact that algae may grow on intracellular 
phosphorous even when the external phosphorous source is depleted, as discussed by Wu et al. (2013).

4. Light intensity largely affects algal growth since it is a prerequisite for photosynthesis. Several 
models have been based on the Steele function describing algal growth as a function of light intensity 
(Beran and Kargi, 2005; Mesplé, Casellas, Troussellier and Bontoux, 1996; Reichert et al., 2001; Wu et 
al., 2013; Yang, 2011) while other models have been based on the Monod function (Mashauri and 
Kayombo, 2002; Sah et al., 2011). The Steele function is defined according to

f (I ) =
I

I opt

⋅e
1− I

I opt (9)

where I is the light intensity and Iopt is the optimal light intensity (Wu et al., 2013). f(I) affects the 
growth rate according to equation (3). The light intensity changes with distance from the light source. 
This attenuation can be described by Lambert-Beer's law according to 

I ( z ) = I 0⋅e−k⋅z (10)

where I(z) is the light intensity at distance z from the light source, I0 is the light intensity of the light 
source and k is a light attenuation coefficient dependent on the concentration of particulate matter 
(Mesplé et al., 1996; Sah et al., 2011; Wu et al., 2013; Yang, 2011). The light attenuation coefficient 
can be described as 

k = k X⋅X +kW (11)

where kX [m2·g-1] is the particulate matter attenuation coefficient, X [g·m-3] is the concentration of 
particulate matter and kW [m-1] is the water attenuation coefficient (Wu et al., 2013; Yang, 2011). 

Several models describe the water body as homogeneous. Such models are based on a spatial average 
of the light intensity or of the specific growth rate (Beran and Kargi, 2005; Wu et al., 2013; Yang, 
2011). 

5. Temperature has a major influence on biochemical processes. The Arrhenius equation has been used 
to describe algal growth as a function of temperature according to   

f (T ) = θT −T 0 (12)

with θ as the temperature coefficient, T as the temperature and T0 as a reference temperature (Banks et 
al., 2003; Beran and Kargi, 2005; Sah et al., 2011).

6. The Monod function has been used to describe algal growth as a function of pH according to 

f ( pH ) =
K pH

K pH + y ( pH )
,

y ( pH ) = 10∣optpH− pH∣
−1

(13)
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with KpH as the half saturation coefficient and optpH as a parameter defining the optimal pH value 
(Beran and Kargi, 2005; Mashauri and Kayombo, 2002).

2.2.2 Examples of models describing algal growth

Wu et al. (2013) modelled growth of the algae species Scenedesmus sp. LX1 as a function of total 
nitrogen using the Monod function, intracellular phosphorous using the Droop function, and light 
intensity using the Steele function. The model was set up according to 

dX A

dt
= μmax⋅ f ( I )⋅

S N

K N+S N

⋅(1−
Q 0

q p

)⋅X A (14)

with f(I) as the Steele function according to equation (9), XA as the algae concentration, SN and KN as the 
concentration of total nitrogen and the corresponding saturation coefficient, and qp and Q0 as the 
phosphorous content in algal biomass and the corresponding minimal content necessary for 
metabolism. Laboratory experiments were conducted to estimate the different parameter values. The 
maximal specific growth rate was estimated to 0.79 d-1, the half saturation coefficient for total nitrogen 
was estimated to 9.5 ± 2.9 g(N)·m-3 and the minimal phosphorous content was estimated to 
0.019 ± 0.003 %. They showed that the relationship between algal growth and light intensity was well 
captured by the Steele model and they suggested that the light intensity of a given depth should be 
calculated following Lambert-Beer's law according to equation (10). 

Decostere et al. (2013) modelled growth of the algae species Chlorella vulgaris as a function of carbon 
dioxide and bicarbonate with preference for carbon dioxide. The growth process was divided into two 
sub-processes according to 

dX A

dt
= μmax⋅

S HCO3

K HCO3+S HCO3

⋅
K CO2

KCO2+SCO2

⋅X A ,

dX A

dt
= μmax⋅

SCO2

KCO2+S CO2

⋅X A .
(15)

The division into sub-processes was necessary in order to relate the change of a specific substrate 
(carbon dioxide or bicarbonate) to the change of algae concentration. The half saturation parameters 
KHCO3 and KCO2 were set to 3 g(HCO3)·m-3 and 0.2 g(CO2)·m-3, respectively. Equation (15) was built 
into a larger model with several state variables such as dissolved oxygen, carbon dioxide and 
bicarbonate, describing the dynamics of algae in a lab environment. The model was calibrated against 
experimental data with respect to the maximal specific growth rate and the KLa value (the KLa value is 
explained in section 2.3). The maximal specific growth rate was thereby estimated to be between 
0.48 d-1 and 0.52 d-1. Good model performance indicated reasonable parameter values. 

Yang (2011) modelled algal growth as a function of carbon dioxide, total nitrogen and light intensity 
according to 

dX A

dt
= μmax⋅ f ( I )⋅

S CO2

KCO2+SCO2

⋅
S NH4+S NO3

K NH4+NO3+S NH4+S NO3

⋅X A (16)

with f(I) as defined in equation (9). The maximal specific growth rate was set to 0.9991 d-1 and both 
half saturation coefficients (KCO2 and KNH4+NO3) were set to 0.001 mol·m-3. The light intensity I was 
calculated using Lambert-Beer's law according to equation (10). Equation (16) was built into a larger 
model with several state variables describing the dynamics of algae and bacteria in a high rate algal 

7



pond type of system. The model was not calibrated against experimental data. However, it was 
evaluated analytically and it was found that the model described the system in a reasonable way.

Sah et al. (2011) modelled algal growth as a function of temperature, light intensity, ammonium and 
nitrate. The growth process was divided into two sub-processes according to 

dX A

dt
= μmax⋅ f (T )⋅

I
K I +I

⋅
S NH4

K NH4+S NH4

⋅X A ,

dX A

dt
= μmax⋅ f (T )⋅

I
K I + I

⋅
S NO3

K NO3+S NO3

⋅
K NH4

K NH4+S NH4

⋅X A

(17)

with f(T) defined according to equation (12). The division into sub-processes was necessary in order to 
relate the change of a specific substrate (ammonium or nitrate) to the change of algae concentration. θ 
and T0, the parameters of the Arrhenius equation, were set to 1.07 and 20 °C, respectively. The light 
intensity at a specific depth was calculated according to Lambert-Beer's law as described in equation 
(10). The half saturation coefficients for ammonium and nitrate were both set equal to 0.01 g(N)·m-3, 
and the maximal specific growth rate was set to 2 d-1. Equation (17) was built into a larger 3D model 
with several state variables describing the dynamics of algae and bacteria in a secondary facultative 
pond. The model was not calibrated against experimental data.

Beran and Kargi (2005) modelled algal growth as a function of ammonium, nitrogen, phosphorous, 
light intensity, pH and temperature according to 

dX A

dt
= μmax⋅min[min [ S NH4 +S NO3

K NH4+NO3+S NH4+S NO3

,
S PO4

K PO4+S PO4
] , f ( I )]⋅

⋅
K pH

K pH + y ( pH )
⋅ f (T )⋅X A

(18)

with  f(I) as the Steele function according to equation (9), f(T) defined according to equation (12) and 
y(pH) defined according to equation (13). They implemented Liebig's Law of Minimum, allowing no 
more than one substrate to be limiting at the same time. T0, the reference temperature of the Arrhenius 
equation, was set to 20 °C. The saturation coefficients for nitrogen and phosphorous were set to 
0.025 g(N)·m-3 and 0.01 g(P)·m-3, respectively, and the maximal specific growth rate was set to 0.5 d-1. 
Equation (18) was built into a larger model with several state variables describing the dynamics of both 
algae and bacteria in a waste stabilisation pond. The model was calibrated with respect to several 
parameters, inter alia KpH and optpH. These parameters were thereby estimated to 150 and 7.1, 
respectively. The calibration yielded a high model performance. 

Banks et al. (2003) modelled algal growth as a function of carbon dioxide, light intensity and 
temperature according to 

dX A

dt
= μmax⋅ f (T )⋅ f ( I )⋅

SCO2

KCO2+SCO2

⋅X A (19)

with f(T) defined according to equation (12). The light intensity was assumed to affect the growth rate 
according to 

f (I ) = e−F D⋅(S D⋅S+B D⋅X +A D⋅A)
⋅L(t) (20)

with L(t) as a function describing the diurnal variations in light intensity, FD as a scattering and 
absorption factor, S and SD as the substrate and its density, X and BD as the bacteria and its density, and 
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A and AD as the algae and its density. The half saturation coefficient for carbon dioxide was set to 
0.044 g(CO2)·m-3, the maximal specific growth rate was set to 1.13 d-1 and the reference temperature of 
the Arrhenius equation T0 was set to 20 °C. Equation (19) was built into a larger model with several 
state variables describing the dynamics of both algae and bacteria in a facultative pond. The model was 
not calibrated. However, model output was compared to observed data indicating that the model 
predicted the system dynamics to some extent. 

Dochain et al. (2003) modelled algal growth as a function of soluble substrate, hydrogen sulphide and 
light intensity according to 

dX A

dt
= μmax⋅(1−

k Q

Q
)⋅X A ,

dQ
dt

= μmax⋅
S S

K S+S S

⋅
K H2S

K H2S +S H2S

⋅f (I )−μmax⋅(Q−k Q)
(21)

with Q as the Droop parameter that represents the quantity of limiting elements and kQ as the minimal 
quantity of Q. The Droop function was used to describe a delay between limiting factors and their 
effect on growth.

Mashauri and Kayombo (2002) modelled algal growth as a function of carbon dioxide, light intensity, 
pH and temperature according to 

dX A

dt
= μmax⋅ f (T )⋅

I
K I +I

⋅
SCO2

KCO2+S CO2

⋅
K pH

K pH+ y ( pH )
⋅X A (22)

with f(T) as described by Jorgensen et al. (1978). The maximal specific growth rate was set to 2.55 d-1 
while the half saturation coefficient for carbon dioxide was set to 0.5 g(CO2)·m-3. y(pH) was calculated 
according to equation (13) and the parameters KpH and optpH were estimated to 189 and 7.79, 
respectively. Equation (22) was built into a larger model with several state variables describing the 
dynamics of both algae and bacteria in a facultative pond. The model was validated against 
measurements from a real facultative pond indicating that the model managed to predict the system 
dynamics to some extent. 

Moreno-Grau et al. (1996) proposed a model describing algal growth as a function of temperature, 
light intensity, ammonia and soluble phosphorous according to 

dX A

dt
= μmax⋅ f (T )⋅ f ( I )⋅

S NH3

K NH3+S NH3

⋅
S P

K P+S P

⋅(1−
X A

ηA
)⋅X A (23)

with f(T) defined according to equation (12) and f(I) defined as the Steele function. The parameter ηA 
defines an upper limit for the algae concentration. θ and T0, the parameters of the Arrhenius equation, 
were set to 1.07 and 20 °C, respectively, and the maximal specific growth rate was set to 0.5 d-1. 
Equation (23) was built into a larger model with several state variables describing the dynamics of, 
inter alia, algae, bacteria and zoo-plankton in a wastewater pond. Model output was compared to 
measurements indicating a good model performance.

Carberry and Greene (1992) proposed a model describing algal growth as a function of light intensity 
and carbon dioxide according to 

dX A

dt
= μmax⋅min( f ( I ) ,

S CO2

K CO2+SCO2
)⋅X A (24)
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with f(I) equal to zero during night and equal to a positive number smaller than one during daytime. 
They implemented Liebig's Law of Minimum, allowing no more than one factor to limit growth at the 
same time. The maximal specific growth rate was set to 0.98 d-1 and the half saturation coefficient for 
carbon dioxide was set to 0.03 g(CO2)·m-3. Equation (24) was built into a larger model with several 
state variables describing the dynamics of algae and bacteria in an algae-bacteria-clay treatment 
system. The model was not calibrated or evaluated against experimental data. However, it was 
evaluated analytically and it was shown that the model managed to describe the system dynamics in a 
reasonable way.

Buhr and Miller (1983) proposed a model describing algal growth as a function of light intensity, 
carbon dioxide and total inorganic nitrogen according to 

dX A

dt
= μmax⋅ f ( I )⋅

S CO2

KCO2+SCO2

⋅
S NH4 +S NO3

K NH4+NO3+S NH4+S NO3

⋅X A (25)

with f(I) defined as a square wave function equal to zero during the night and equal to one during 
daytime. The maximal specific growth rate was set to 0.9991 d-1 and the half saturation coefficients for 
carbon dioxide and total inorganic nitrogen were both set to 0.001 mol·m-3. Equation (25) was built into 
a larger model with several state variables describing the dynamics of algae and bacteria in a high-rate 
algae-bacteria treatment pond. The model was validated against experimental data and was shown to 
describe the real system well. 

2.2.3 Processes reducing the concentration of algae

Several processes counteract algal growth by affecting the algae concentration negatively. The 
processes of death and respiration are present irrespective of system set-up while the existence of other 
processes, such as predation, grazing and sedimentation, depends upon the system set-up. Some models 
include only one process reducing the concentration of algae. The process is then defined as algal decay 
according to

dX A

dt
= −b⋅X A (26)

with b as the decay coefficient (Buhr and Miller, 1983; Decostere et al., 2013; Yang, 2011). This 
process has also been described as a function of temperature (Sah et al., 2011) by multiplying equation 
(26) with the Arrhenius equation, and as a function of dissolved oxygen (Dochain et al., 2003) 
according to 

dX A

dt
= −b⋅(1−

S O2

KO2+SO2
)⋅X A . (27)

Since those models only include one process reducing the concentration of algae, the process must 
necessarily represent both death and respiration. 

Beran and Kargi (2005) proposed a model including basal metabolism, sedimentation and grazing. 
Respiration is part of the basal metabolism and algal death was included in the sedimentation process 
since they assumed the sedimentation to be a direct result of algal death. They assumed the 
concentration of zoo-plankton to be a constant fraction of the concentration of algae, making the 
process of gazing proportional to the algae concentration. Other models that include several processes 
reducing the concentration of algae have been proposed by Mesplé et al. (1996) (including death and 
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grazing), Moreno-Grau et al. (1996) (including death, respiration and sedimentation), and Colomer and 
Rico (1993) (including decomposition and sedimentation).

2.2.4 Summary of kinetic parameters 

The kinetic parameters presented earlier in this section were rewritten and expressed in the same units 
in order to allow straightforward comparisons (Table 1).

Table 1. Kinetic parameters used in the models presented in this section

Parameter Value Description Unit

μmax 0.79 a, 0.48-0.52 b,  
0.9991 c, j, 2 d, 0.5 e, h, 
1.13 f, 2.55 g, 0.98 i

Maximal specific growth rate [d-1]

KN 9.5 ± 2.9 a Saturation coefficient for total nitrogen  [g(N)·m-3]

KNH4+NO3 0.025 e, 0.014 c, j Saturation coefficient for ammonium plus nitrate [g(N)·m-3]

KNH4 0.01 d Saturation coefficient for ammonium [g(N)·m-3]

KNO3 0.01 d Saturation coefficient for nitrite  [g(N)·m-3]

KPO4 0.01 e Saturation coefficient for phosphorous [g(P)·m-3]

KCO2 0.055 b, 0.012 c, f, j, 
0.14 g, 0.0082 i

Saturation coefficient for carbon dioxide [g(C)·m-3]

KpH 150 e, 189 g Saturation coefficient for pH [-]

optpH 7.1 e, 7.79 g Optimal pH value [-]

θ 1.07 d, h Temperature coefficient of the Arrhenius equation [-]

T0 20 d, e, f, h Reference temperature in the Arrhenius equation [°C]

b 0.01 b, 0.05 c, j, 0.1 d Decay rate [d-1]
a (Wu et al., 2013). b (Decostere et al., 2013). c (Yang, 2011). d (Sah et al., 2011). e (Beran and Kargi, 
2005). f (Banks et al., 2003). g (Mashauri and Kayombo, 2002). h (Moreno-Grau et al., 1996). 
i (Carberry and Greene, 1992). j (Buhr and Miller, 1983).

2.3 GAS EXCHANGE 

The oxygen and carbon dioxide concentrations in an activated sludge basin are govern by the water-
atmosphere gas exchange. It makes the concentrations converge towards their respective saturation 
values according to equation (30) and (31). The saturation value of gas G may be calculated using 
Henry's law according to 

G SAT = k H ,G⋅PG (28)

with GSAT as the saturation value, kH,G as Henry's constant and PG as the partial pressure (Atkins and 
Jones, 2008).
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The concentrations can also be governed through active management in terms of aeration or carbon 
dioxide injection, and these processes can also be described by equation (30) and (31). The combined 
effect of the water-atmosphere gas exchange and the gas injection can be modelled in different ways. 
Yang (2011) separated the processes and modelled the combined effect according to 

d (S G)

dt
= wG+ f G (29)

with SG as the gas concentration in the water column, wG representing the water-atmosphere gas 
exchange and fG representing the gas injection. The separation into different terms allows a detailed 
process description. A less complex alternative to this approach is to describe the two processes with 
one term rather than two. This was done within BSM1 presented in section 3.2. 

The gas exchange of oxygen, referred to as the oxygen transfer rate (O2TR), can be described 
according to 

O2TR = K L aO2⋅(O2SAT−S O2) (30)

where KLaO2 defines how fast oxygen is transferred to or from the water column, O2SAT is the oxygen 
saturation value and SO2 is the dissolved oxygen concentration in the water column. Equation (30) has 
been implemented in models proposed by Decostere et al. (2013), Dochain et al. (2003) and Mashauri 
and Kayombo (2002). It has also been implemented in BSM1 presented in section 3.2, and in an 
AQUASIM application of RWQM1 presented in section 3.3. RWQM1 was implemented in AQUASIM 
by Peter Reichert and the AQUASIM file needed to run the program is provided at his homepage 
(Reichert, 2014). The parameter values governing the gas exchange of oxygen used in these models are 
summarized in Table 2.

Within BSM1, more thoroughly presented in section 3.2, the KLaO2 value was allowed to vary between 
0 d-1 representing a non-aerated basin, and 360 d-1 representing strong aeration, and the oxygen 
saturation value was set to 8 g(O)·m-3 (Alex et al., 2008b). BSM1 was developed to describe an 
activated sludge process.

In the AQUASIM application the KLaO2 value and the dissolved oxygen saturation value were both 
temperature dependent. For a temperature of 20 °C, they equalled 20 d-1 and 9.0953 g(O)·m-3, 
respectively. No aeration was assumed and the equation was used to describe oxygen transports both to 
and from the water column. RWQM1 represents a river system why its KLaO2 value is likely to be larger 
than for an activated sludge basin without aeration. The relatively large surface area and the turbulence 
of the river facilitates gas transports between water and atmosphere. 

Decostere et al. (2013) estimated the KLaO2 value of a reactor empirically and found that the value 
varied between 15.84 d-1 and 26.79 d-1. They calculated the oxygen saturation value as a function of 
temperature. For a temperature of 20 °C, it equalled 9.0236 g(O)·m-3. They used equation (30) in order 
to describe the dissolved oxygen concentration of a 1 L reactor containing an algae population of 
Chlorella vulgaris. The oxygen concentration of the reactor varied around the saturation value and the 
model gave a good prediction of observed values. Hence, their model managed to describe oxygen 
transfer both to and from the water column. The reactor was mixed through air sparging why the 
estimated KLaO2 values are likely to be larger than for an activated sludge basin without aeration.

Dochain et al. (2003) estimated the KLaO2 value empirically to 0.24 d-1. They included equation (30) in 
a model describing algae and bacteria dynamics and calibrated the model against measured dissolved 
oxygen data. In the same way they estimated the oxygen saturation value to 10 g(O)·m-3. The relatively 
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low KLaO2 value may be due to the fact that their model described a still lagoon with low turbulence. 
The calibration domain included dissolved oxygen concentrations varying around the saturation value. 
Hence, the equation described oxygen transfer both to and from the water column.

Mashauri and Kayombo (2002) defined the KLaO2 value as a function of wind speed following Blanks 
and Herrera (1977). The KLaO2 value was zero in the absence of wind.

Table 2. Summary of KLa values and saturation values for oxygen presented in this section

Model KLaO2 at 20 °C [d-1] O2SAT at 20 °C [g(O)·m-3]

BSM1 0-360 8 

AQUASIM a 20 9.0953 

Decostere et al. (2013) 15.84-26.79 9.0236 

Dochain et al. (2003) 0.24 10 

Mashauri and Kayombo (2002) 0 if no wind -

a AQUASIM application of RWQM1.

The gas exchange of carbon dioxide, referred to as the carbon dioxide transfer rate (CO2TR), can be 
described according to 

CO2TR = K L aCO2⋅(CO2SAT−SCO2) (31)

where KLaCO2 defines how fast carbon dioxide is transferred to or from the water column, CO2SAT is the 
carbon dioxide saturation value and SCO2 is the carbon dioxide concentration in the water column. 
Equation (31) has been implemented in models proposed by Decostere et al. (2013) and Mashauri and 
Kayombo (2002), and in the AQUASIM application of RWQM1. The parameter values governing the 
gas exchange of carbon dioxide used in these models are summarized in Table 3.

In the AQUASIM application the KLaCO2 value and the carbon dioxide saturation value were both 
temperature dependent. For a temperature of 20 °C, they equalled 16 d-1 and 0.1535 g(C)·m-3, 
respectively. Equation (31) was defined to describe carbon dioxide transports both to and from the 
water column. 

Decostere et al. (2013) calculated the KLaCO2 value from the KLaO2 value according to 

K L aCO2 = K L aO2⋅√ DCO2
DO2

(32)

with DO2 and DCO2 as the diffusion coefficients of oxygen and carbon dioxide in water, respectively. 
Those coefficients equal 1.73e-4 m2·d-1 and 1.65e-4 m2·d-1, respectively (Wolf et al., 2007). Equation 
(32) and KLaO2 values ranging between 15.84 d-1 and 26.79 d-1 yielded KLaCO2 values ranging between 
15.47 d-1 and 26.16 d-1. They calculated the carbon dioxide saturation value from the atmospheric 
carbon dioxide concentration using Henry's law. It was hence calculated to 0.0873 g(C)·m-3. Carbon 
dioxide was injected into the water column and the reactor was mixed by sparging. The estimated 
KLaCO2 value is hence likely to be larger than for an activated sludge basin without aeration. 

Mashauri and Kayombo (2002) defined the KLaCO2 value as a function of wind speed following Blanks 
and Herrera (1977). The KLaCO2 value was zero in the absence of wind.
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Table 3. Summary of KLa values and saturation values for carbon dioxide presented in this section

Model KLaCO2 at 20 °C [d-1] CO2SAT at 20 °C [g(C)·m-3]

AQUASIM a 16 0.1535

Decostere et al. (2013) 16.2-27.43 0.0873

Mashauri and Kayombo (2002) 0 if no wind -

a AQUASIM application of RWQM1.
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3 SIMULATION MODELS

Three models were used in this study: ASM1, BSM1 and RWQM1. RWQM1 was used as the starting 
point for model development while ASM1 and BSM1 were used in model evaluation and calibration.

3.1 THE ACTIVATED SLUDGE MODEL NO. 1

The Activated Sludge Model No. 1, abbreviated ASM1, is a widely spread and acknowledged model 
describing the dynamics of heterotrophic and autotrophic bacteria in a wastewater treatment 
environment. Henze et al. (1987) provide a comprehensive model description and a Gujer matrix 
summarizing the model. The Gujer matrix is presented in Appendix A.

Table 4. State variables included in ASM1

State variable Description Unit

SI Soluble inert organic matter [g(COD)·m-3]

SS Readily biodegradable substrate [g(COD)·m-3]

XI Particulate inert organic matter [g(COD)·m-3]

XS Slowly biodegradable substrate [g(COD)·m-3]

XB,H Active heterotrophic biomass [g(COD)·m-3]

XB,A Active autotrophic biomass [g(COD)·m-3]

XP Particulate products arising from biomass decay [g(COD)·m-3]

SO Oxygen [g(O)·m-3]

SNO Nitrate and nitrite nitrogen [g(N)·m-3]

SNH Ammonium and ammonia nitrogen [g(N)·m-3]

SND Soluble biodegradable organic nitrogen [g(N)·m-3]

XND Particulate biodegradable organic nitrogen [g(N)·m-3]

SALK Alkalinity [mol·m-3]

ASM1 consists of 13 differential equations defining the dynamics of 13 state variables (Table 4). All 
state variables except soluble and particulate inert organic matter are affected by one or several out of 
eight processes. The relationship between a state variable and the processes that affect it is defined by 
stoichiometric coefficients according to 

dS j

dt
= ∑

i=1

8

e i , j⋅pi (33)

with Sj as state variable j, ei,j as the stoichiometric coefficient relating process i to state variable j, and pi 

as process i. 

The processes describe bacterial growth, bacterial decay, ammonification and hydrolysis. Monod 
functions describe how the growth processes are affected by limiting substrates and switching functions 
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makes aerobic growth prevalent under aerobic conditions and anoxic growth prevalent under anoxic 
conditions. The processes of decay were assumed to incorporate several processes such as metabolism, 
death, predation and lysis (Henze et al., 1987). However, they were described with relatively simple 
equations, first order with respect to the heterotrophic or the autotrophic biomass. Hydrolysis is the 
process in which slowly biodegradable substrate is turned into readily biodegradable substrate. The 
hydrolysis process included in ASM1 is defined according to 

k h⋅
X S/ X B , H

K X + X S / X B , H

⋅( SO2

K O2+S O2

+ηh⋅
K O2

KO2+SO2

⋅
S NO

K NO+S NO
)⋅X B , H . (34)

It is assumed that the hydrolysis rate is first order with respect to heterotrophic biomass, and that the 
rate saturates as the concentration of  slowly biodegradable substrate largely exceeds the concentration 
of heterotrophic bacteria. It is also assumed that the process is dependent on enzymes and that the 
enzyme production is dependent on the availability of electron acceptors. This is represented by the 
Monod functions for oxygen and nitrate plus nitrite.

Nitrification is known to be affected by pH (Henze et al., 1987). This dependency was not included in 
ASM1 due to the difficulties in estimating pH dynamics. Therefore, ASM1 may only be used to 
simulate systems with neutral pH. The alkalinity is estimated as a control tool. An alkalinity below 
1 mol·m-3 indicates an unstable pH that may drop to values well below 6 (Henze et al., 1987). An other 
assumption affecting the application domain of ASM1 is the absence of phosphorous limitation. ASM1 
may only be used to describe systems were phosphorous is non-limiting.

3.2 THE BENCHMARK SIMULATION MODEL NO. 1

The Benchmark Simulation Model no. 1, abbreviated BSM1, is a widely spread and acknowledged 
framework that is used to simulate an activated sludge process in order to evaluate control and 
operation strategies. It was completed by the IWA Task Group on Benchmarking of Control Strategies 
and they provide a comprehensive model description (Alex et al., 2008b). The model software is free 
and can be downloaded from the Department of Industrial Electrical Engineering and Automation at 
Lund University (Alex et al., 2008a).

BSM1 is based on an activated sludge process structure that can be implemented in Simulink. The 
structure represents a conventional treatment process with internal recirculation, a five-compartment 
water basin and a settler (Figure 2). All compartments are subject to biochemical processes that are 
described by the differential equations of ASM1, defined in a C-function. The settler is described as a 
ten layered unit. Aeration may be implemented in all compartments but are by default only 
implemented in the last three, representing a pre-denitrification process. Several sets of dynamic 
influent driving data are available representing different weather conditions, as is a set of constant 
influent driving data (Table 5). The wastewater treatment process may be simulated as open loop 
without active controllers, or as closed loop, for control strategy analysis.
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Table 5. Influent data provided within the BSM1 framework

State variable Influent value Unit

SI 30 [g(COD)·m-3]

SS 69.5 [g(COD)·m-3]

XI 51.2 [g(COD)·m-3]

XS 202.32 [g(COD)·m-3]

XB,H 28.17 [g(COD)·m-3]

XB,A 0 [g(COD)·m-3]

XP 0 [g(COD)·m-3]

SO2 0 [g(O)·m-3]

SNO 0 [g(N)·m-3]

SNH 31.56 [g(N)·m-3]

SND 6.95 [g(N)·m-3]

XND 10.59 [g(N)·m-3]

SALK 7 [mol·m-3]

Q 18 446 [m³·d-1]

3.3 THE RIVER WATER QUALITY MODEL NO. 1

The River Water Quality Model no. 1, abbreviated RWQM1, is a model describing the dynamics of 
heterotrophic and autotrophic bacteria, zoo-plankton and algae in a river water environment. Reichert 
et al. (2001) provide a comprehensive model description and a Gujer matrix summarizing the model. 
The Gujer matrix is presented in Appendix B.

Just like ASM1, RWQM1 consists of a set of differential equations governing the change of model state 
variables (Table 6). Despite the similarities in model structure and representation there are several 
major differences between RWQM1 and ASM1, of which three are of special interest. Firstly, the 
model application domains differ. RWQM1 was developed to describe a river water system while 
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Figure 2. Basic description of the BSM1 structure. Aeration is applied to the three last compartments 
representing pre-denitrification.
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ASM1 was developed to describe a wastewater treatment system. Secondly, RWQM1 is much larger in 
terms of the number of included state variables and processes. The large model size is a consequence of 
the relatively complex application domain that includes algae and pH dynamics. Algae constitute an 
important element in a typical river system and algae dynamics have a relatively large impact on the pH 
value. In order to describe such a system accurately it is necessary to model pH variations. This 
requires the inclusion of several chemical equilibria that affect the pH value, and the corresponding 
state variables. Thirdly, the organic state variables of RWQM1 are described not only in terms of COD 
units but also in terms of dry weight. Each organic state variable is assumed to consist of the elements 
carbon, hydrogen, oxygen, nitrogen and phosphorous, and elemental mass fractions are explicitly 
defined for each one of them. Reichert et al. (2001) provide a formula based on these mass fractions 
connecting COD units to dry weight. 

Stoichiometric coefficients were calculated from the elemental composition of organic state variables, 
stoichiometric parameters and the principle of mass conservation, a method presented by Reichert and 
Schuwirth (2010). This method ensures that the total mass of a certain element remains constant within 
a closed system. It can be used to strengthen or impugn empirically determined stoichiometric 
coefficients. A limitation of the RWQM1 is that it may be unable to describe systems in which other 
elements than those explicitly defined as mass fractions are abundant. A water with a lot of siliceous 
diatoms is an example of such a system.

Due to the large model size and the complex formulae used to calculate the stoichiometric coefficients 
the Gujer matrix lacks process equations and stoichiometric coefficients. The stoichiometric 
coefficients are presented in Appendix C and they may be downloaded from Peter Reichert's homepage 
(Reichert, 2014). The process equations are presented in Appendix D. Some of the processes were of 
special interest in this study and they are presented below.

Aerobic growth of heterotrophic bacteria on ammonium: 

k gro , H , aer⋅eβH⋅(T −T 0)⋅
S S

K S +S S

⋅
S O2

KO2+SO2

⋅
S NH4+S NH3

K N , H ,aer +S NH4+S NH3

⋅

⋅
S HPO4+S H2PO4

K PO4+S HPO4+S H2PO4

⋅X H

(35)

Aerobic growth of heterotrophic bacteria on nitrate: 

k gro , H , aer⋅eβH⋅(T −T 0)⋅
S S

K S +S S

⋅
S O2

KO2+SO2

⋅
K N , H , aer

K N , H ,aer +S NH4+S NH3

⋅

⋅
S NO3

K N , H ,aer +S NO3

⋅
S HPO4+S H2PO4

K PO4+S HPO4+S H2PO4

⋅X H

(36)

Anoxic growth of heterotrophic bacteria on nitrate: 

k gro , H , anox⋅eβH⋅(T −T0 )⋅
S S

K S+S S

⋅
KO2

K O2+S O2

⋅
S NO3

K NO3 , H ,anox+S NO3

⋅
S HPO4+S H2PO4

K PO4+S HPO4+S H2PO4

⋅X H (37)

Anoxic growth of heterotrophic bacteria on nitrite: 

k gro , H , anox⋅eβH⋅(T −T0 )⋅
S S

K S+S S

⋅
KO2

K O2+S O2

⋅
S NO2

K NO2 , H ,anox+S NO2

⋅
S HPO4+S H2PO4

K PO4+S HPO4+S H2PO4

⋅X H (38)
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Growth of algae with ammonium: 

k gro , ALG⋅eβALG⋅(T −T0 )⋅
S NH4+S NH3+S NO3

K N , ALG+S NH4+S NH3+S NO3

⋅
S NH4+S NH3

K NH4+NH3+S NH4+S NH3

⋅

⋅
S HPO4+S H2PO4

K HPO4 , ALG+S HPO4+S H2PO4

⋅
I

K I

⋅e
1− I

K I⋅X A

(39)

Growth of algae with nitrate: 

k gro , ALG⋅eβALG⋅(T −T0 )⋅
S NH4+S NH3+S NO3

K N , ALG+S NH4+S NH3+S NO3

⋅
K NH4 , ALG

K NH4 , ALG+S NH4+S NH3

⋅

⋅
S HPO4+S H2PO4

K HPO4 , ALG+S HPO4+S H2PO4

⋅
I

K I

⋅e
1−

I
K I⋅X A

(40)

Growth of consumers on Xi with i as ALG, S, H, N1 or N2: 

k gro ,CON⋅eβCON⋅(T −T 0)⋅
SO2

K O2 ,CON +S O2

⋅X i⋅X CON (41)

Hydrolysis: 

k hyd⋅eβhyd⋅(T−T 0)⋅X S (42)
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Table 6. State variables included in RWQM1

State 
variable

Corresponding 
ASM1 variable

Description Unit

SS SS, SND 
a Readily biodegradable substrate [g(COD)·m-3]

SI SI Soluble inert organic matter [g(COD)·m-3]

SNH4 SNH Ammonium [g(N)·m-3]

SNH3 SNH Ammonia [g(N)·m-3]

SNO2 SNO Nitrite [g(N)·m-3]

SNO3 SNO Nitrate [g(N)·m-3]

SHPO4 - Hydrogen phosphate [g(P)·m-3]

SH2PO4 - Dihydrogen phosphate [g(P)·m-3]

SO2 SO2 Dissolved oxygen [g(O)·m-3]

SCO2 - Carbon dioxide [g(C)·m-3]

SHCO3 - Bicarbonate [g(C)·m-3]

SCO3 - Carbon trioxide [g(C)·m-3]

SH SALK Hydrogen [mol·m-3]

SOH - Hydroxide [mol·m-3]

SCa - Calcium [g(Ca)·m-3]

XH XB,H Active heterotrophic biomass [g(COD)·m-3]

XN1 XB,A First stage nitrifiers [g(COD)·m-3]

XN2 XB,A Second stage nitrifiers [g(COD)·m-3]

XALG - Algae [g(COD)·m-3]

XCON - Consumers (zoo-plankton) [g(COD)·m-3]

XS XS, XND 
a Slowly biodegradable substrate [g(COD)·m-3]

XI XI+XP Particulate inert organic matter [g(COD)·m-3]
a  The RWQM1 state variables of readily and slowly biodegradable substrate are associated with 
nitrogen mass fractions. Hence, they correspond to the ASM1 state variables of SS and SND, and XS and 
XND, respectively.
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4 SIMULINK IMPLEMENTATION OF THE ACTIVATED SLUDGE MODEL 
NO. 1

A model set-up based on ASM1 was implemented in Simulink. The model set-up was to be used as a 
tool for evaluation and calibration in the development of an algae based activated sludge model based 
on RWQM1.

The differential equations of ASM1 were implemented in a Matlab S-function that was evaluated 
through comparisons with the ASM1 C-function used within the BSM1 framework. Consistency 
between the two functions was considered to indicate a correct code implementation. 

An activated sludge process consisting of one completely mixed basin and ideal sedimentation was 
modelled in Simulink. The system dynamics of the basin were described by the ASM1 differential 
equations as implemented in the S-function. A quality control of the model set-up was conducted 
through comparisons with BSM1.

4.1 IMPLEMENTATION AND EVALUATION OF THE DIFFERENTIAL EQUATIONS THAT 
DEFINE THE ACTIVATED SLUDGE MODEL NO. 1

The S-function was written following the structure of the ASM1 C-function used within the BSM1 
framework. The gas exchange was hence included in the function. The two functions were run in 
parallel using the same input (Figure 3). Continuous influent driving data (Table 5) and parameter 
values were taken directly from the BSM1 framework (Alex et al., 2008a). Output data from the two 
functions were compared in order to evaluate if the differential equations of ASM1 had been correctly 
implemented in the S-function. 

Autotrophic bacteria require aerobic conditions while heterotrophic bacteria survive in both aerobic and 
anoxic environments. In order to study the dynamics of both bacteria species two scenarios were 
investigated: one anoxic scenario with a KLa value equal to 0 and one aerobic scenario with a KLa value 
equal to 240 d-1. The basin volume was set to 50 000 m3 in order to allow a high sludge age in the 
absence of sludge recirculation. A high sludge age was needed in order to study the dynamics of 
autotrophic bacteria due to their low growth rate. System dynamics were elucidated through a 50 % 
step increase in the inflow magnitude, from 18 446 m3·d-1 to 27 669 m3·d-1.  
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Figure 3. Model set-up in Simulink allowing a comparison between output data from the S-function 
(upper line) and output data from the C-function (lower line).



Simulations of both the aerobic scenario and the anoxic scenario showed that the S-function generated 
the same output as the C-function, indicating a correct implementation of the ASM1 differential 
equations (Figure 4). 

4.2 IMPLEMENTATION AND EVALUATION OF AN ACTIVATED SLUDGE MODEL BASED 
ON THE ACTIVATED SLUDGE MODEL NO. 1

An activated sludge process was modelled based on the S-function described in section 4.1. The model 
consisted of a completely mixed activated sludge basin followed by a sedimentation unit (Figure 5). A 
simple sedimentation configuration was implemented assuming ideal sedimentation as presented in 
sub-section 2.1.2. The basin volume was set to 6 000 m3 and the sludge age was set to 10 d, yielding a 
waste flow magnitude of 300 m3·d-1. The return flow magnitude was set equal to the inflow magnitude.
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Figure 4. Response of the S-function (solid) and the C-function (stars) to a 50 % step increase in inflow 
magnitude. The step was taken after 20 days. 

Figure 5. Model set-up in Simulink. The S-function described in section 4.1 defines the dynamics of the  
water basin. Q_r, Q_w, Q_e and Q_i represent the return flow, the waste flow, the effluent and the 
influent, respectively. 



The ASM1 set-up described above was quality controlled through comparisons with the open loop 
version of BSM1. The comparison was focused on steady state values under both aerobic 
(KLa = 240 d-1) and anoxic (KLa = 0 d-1) conditions. For consistency between the models the internal 
recirculation of BSM1 was set to zero and the magnitude of the waste flow was set to 300 m3·d-1. Both 
models were driven by constant influent data taken from the BSM1 framework (Table 5). Simulations 
were conducted with an ode15s solver and a relative tolerance of 1e-13. The basin volume of BSM1 is 
divided into five compartments of which the last one was used in the comparison. 

The comparison revealed that the two models were relatively consistent in terms of the steady state 
values of all investigated state variables (Table 7), indicating that the ASM1 set-up was adequate for 
describing an activated sludge process. Both models reflected the fact that an anoxic environment 
aggravates the growth of heterotrophic bacteria and prohibits the growth of autotrophic bacteria, and 
that the extinction of nitrifiers prohibits the nitrification process resulting in low nitrate and nitrite 
concentrations and high ammonium and ammonia concentrations. The settler included in the ASM1 
set-up was based on ideal sedimentation while the settler in BSM1 was described as a 10 layered unit 
accounting for settling velocity. Small inconsistencies in steady state values were hence expected.

Table 7. Steady state values of some state variables in the activated sludge basin under aerobic and 
anoxic conditions according to the ASM1 set-up and BSM1

State variable Aerobic scenario Anoxic scenario Unit

ASM1 set-up BSM1a ASM1 set-up BSM1a

Heterotrophic bacteria 3029 2887 217 202 [g(COD)·m-3]

Autotrophic bacteria 200 188 0 0 [g(COD)·m-3]

Dissolved oxygen 4 6 0 0 [g(O)·m-3]

Alkalinity 2.1 2.3 7.4 7.4 [mol·m-3]

Nitrate plus nitrite 38 34 0 0 [g(N)·m-3]

Ammonium plus ammonia 0.5 0.1 37 38 [g(N)·m-3]

Readily biodegradable substrate 1.0 0.6 69.5 69.5 [g(COD)·m-3]

Slowly biodegradable substrate 59 37 6918 5512 [g(COD)·m-3]
a Steady state values taken from the last compartment.
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5 SIMULINK IMPLEMENTATION OF THE RIVER WATER QUALITY MODEL 
NO. 1

The differential equations of RWQM1 were implemented in a Matlab S-function following the 
structure of the S-function presented in section 4.1. An activated sludge process was modelled in 
Simulink based on the RWQM1 S-function following the structure of the ASM1 set-up described in 
section 4.2. A comparison was then made between the system dynamics of the RWQM1 set-up and the 
system dynamics of the ASM1 set-up. This was done to evaluate how well the RWQM1 set-up 
described an activated sludge process. The algae dynamics of RWQM1 were excluded in order to allow 
a straightforward comparison between the two models. It should be emphasized that the comparison 
was motivated by the fact that RWQM1 was developed to describe a river system and not an activated 
sludge basin.

5.1 IMPLEMENTATION OF THE DIFFERENTIAL EQUATIONS THAT DEFINE THE RIVER 
WATER QUALITY MODEL NO. 1

The differential equations of RWQM1 were written in a S-function that is presented in Appendix E. It 
had the same structure as the S-function used in the ASM1 set-up presented in section 4.1, and hence 
the same structure as the ASM1 C-function used within the BSM1 set-up. The equations were 
simplified in that the light intensity dependency of algal growth, described in equation (39) and 
equation (40), was neglected. It was assumed that the light intensity at the light source can be kept 
constant and that the change of light attenuation due to variations in biomass concentration may be 
neglected. Some other modifications, coupled to the representation of gas exchange, were done in order 
to make the model fit into an activated sludge environment. Those are presented in this section. 

Gas exchange processes, as described in section 2.3, are essential for a correct description of dissolved 
oxygen and carbon dioxide dynamics of an activated sludge environment. No such processes were 
included in the differential equations that define RWQM1. The differential equations governing the 
change of dissolved oxygen and carbon dioxide were hence adjusted to account for gas exchange. The 
possibility of aeration and carbon dioxide injection was built into the RWQM1 set-up allowing the user 
to choose one out of four different gas exchange scenarios.

The first scenario represented an activated sludge basin with neither aeration nor carbon dioxide 
injection (Table 9). Oxygen and carbon dioxide exchange between the water column and the 
atmosphere were described by equation (30) and (31), respectively. Saturation values were calculated 
according to Henry's law (Table 8).

Table 8. Values used in Henry's law and the corresponding calculated saturation values

Gas (G) kH,G [mol·L-1·atm-1] PG [atm] GSAT [mol·L-1] GSAT

Oxygen 1.3e-3 a 0.21 a 2.73e-4 8.736 g(O)·m-3

Carbon dioxide 2.3e-2 a 392.52e-6 9.03e-6 0.11 g(C)·m-3

aAtkins and Jones (2008). 

The partial carbon dioxide pressure was calculated according to

PCO2 = xCO2⋅P (43)
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with PCO2 as the partial pressure, xCO2 as the the mole fraction and P as the total pressure (Atkins and 
Jones, 2008). The mole fraction of carbon dioxide was set to 392.52 ppm which was the global and 
annual average of 2012 (Dlugokencky and Tans, 2014), and the total pressure was set to 1 atm which is 
the sea level average (Ackerman and Knox, 2003). These values were inserted in equation (43) and 
yielded a partial carbon dioxide pressure of 392.52e-6 atm. 

The KLa values of a still wastewater treatment basin is relatively low due to the small surface area and 
the low turbulence. Within the BSM1 framework, the KLaO2 value of an unsaturated basin equals 0 d-1, 
and Mashauri and Kayombo (2002) assumed that the KLa values (for both oxygen and carbon dioxide) 
of a water body equal 0 d-1 if no wind stresses the surface. However, in the RWQM1 set-up it was 
desired to include the gas exchange to some extent. This was considered important due to the oxygen 
producing and carbon dioxide consuming algae that was to be included in the model. Dochain et al. 
(2003) estimated the KLaO2 value empirically to 0.24 d-1 studying a still lagoon with oxygen transfer 
both to and from the water column. It was reasoned that the KLaO2 value of a still activated sludge basin 
must be smaller than the value of a still lagoon due to the smaller surface area. The KLaO2 value was 
hence set to 0.12 d-1. The KLaCO2 value was calculated to 0.12 d-1 using equation (32). This scenario is 
assumed to describe gas transports both to and from the water column, depending on the gas 
concentrations in the water. 

Table 9. Parameters needed to describe the oxygen and carbon dioxide dynamics of the first scenario

Gas KLa value [d-1] Saturation value

O2 0.12 8.736 g(O)·m-3

CO2 0.12 0.11 g(C)·m-3

The second scenario represented an aerated activated sludge basin (Table 10). The processes of 
water-atmosphere oxygen exchange and aeration were described in separate equations following 
Yang (2011). This approach enabled a relatively detailed system description.

The water-atmosphere gas exchange was described as in the first scenario. However, the KLa values 
were increased to represent a turbulent water. The KLaO2 value was set equal to 21.315 d-1, that is the 
middle of the interval estimated by Decostere et al. (2013) who studied a reactor mixed by sparging. 
The KLaCO2 value was calculated to 20.82 d-1 using equation (32).

A new term representing fast oxygen supply through aeration was added, corresponding to fG in 
equation (29). The KLaO2 value of this term was set to 219 d-1 as default but it was allowed to vary 
between 0 and 339 d-1 representing different levels of aeration, just as within the BSM1 framework. 
The saturation value was set equal to that of the water-atmosphere oxygen exchange representing 
aeration rather than oxygen injection. This scenario is assumed to describe oxygen transports to the 
water column and not from it.
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Table 10. Parameters needed to describe the oxygen and carbon dioxide dynamics of the second 
scenario

Gas KLa value [d-1] Saturation value

O2 (water-atmosphere) 21.315 8.736 g(O)·m-3

CO2 (water-atmosphere) 20.82 0.11 g(C)·m-3

O2 (injection) 0-339 (default 219) 8.736 g(O)·m-3

The third scenario represented an activated sludge basin with carbon dioxide injection (Table 11). The 
water-atmosphere gas exchange of this scenario was described in the same way as in the second 
scenario. A new term was added representing carbon dioxide injection and the aeration term used in the 
second scenario was deleted. The KLaCO2 value of the carbon dioxide injection term was allowed to vary 
between 0 d-1 and 352 d-1, representing different levels of carbon dioxide injection. The KLaCO2 interval 
was calculated from the KLaO2 interval from the second scenario according to equation (32). 

The saturation value for carbon dioxide injection was calculated from the partial carbon dioxide 
pressure of the bubbles and Henry's constant using equation (28), following the approach of 
Ifrim et al. (2014) and Yang (2011). The partial carbon dioxide pressure changes while the bubbles 
travel towards the surface. A spatial average was calculated from the logarithmic mean of the carbon 
dioxide molar fraction between the injection point and the surface following Ifrim et al. (2014). The 
carbon dioxide molar fraction at the injection point was set to 0.1 (Yang, 2011) and it was assumed that 
the molar fraction at the surface was 0.01, yielding a logarithmic mean of 0.039. The total pressure in 
the bubbles was set to 1.09 atm (Yang, 2011). Insertion of these values in equation (43) yielded a partial 
carbon dioxide pressure of 0.04251 atm. Using this value and Henry's constant in equation (28) yielded 
a carbon dioxide saturation value of  about 11.7 g(C)·m-3. This scenario is assumed to describe carbon 
dioxide transports to the water column and not from it.

Table 11. Parameters needed to describe the oxygen and carbon dioxide dynamics of the third scenario

Gas KLa value [d-1] Saturation value

O2 (water-atmosphere) 21.315 8.736 g(O)·m-3

CO2 (water-atmosphere) 20.82 0.11 g(C)·m-3

CO2 (injection) 0-331 (default 214) 11.7 g(C)·m-3

The fourth scenario represented an aerated basin subject to carbon dioxide injection, that is a 
combination of the second scenario and the third scenario (Table 12). 
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Table 12. Parameters needed to describe the oxygen and carbon dioxide dynamics of the fourth 
scenario

Gas KLa value [d-1] Saturation value

O2 (water-atmosphere) 21.315 8.736 g(O)·m-3

CO2 (water-atmosphere) 20.82 0.11 g(C)·m-3

O2 (injection) 0-339 (default 219) 8.736 g(O)·m-3

CO2 (injection) 0-331 (default 214) 11.7 g(C)·m-3

5.2 MODEL SET-UP, PARAMETER VALUES AND INFLUENT DATA SELECTION

The RWQM1 set-up was constructed following the structure of the ASM1 set-up described in section 
4.2. As such it consisted of a water basin of 6 000 m3, a sludge recirculation equal to the inflow 
magnitude, and ideal sedimentation. The sludge age was set to 10 d yielding a waste flow magnitude of 
300 m3·d-1.

Predefined stoichiometric coefficients relating the change of state variables to system processes were 
downloaded from Peter Reichert's homepage (Reichert, 2014). They had been calculated from the 
elemental composition of organic matter, stoichiometric parameters (inter alia process yields) and the 
principle of mass conservation. Two sets of stoichiometric coefficients were available at Peter 
Reichert's homepage. One was based on organic state variables expressed in dry weight while the other 
was based on organic state variables expressed in COD units. For consistency with the ASM1 set-up it 
was chosen to use the stoichiometric coefficients that were based on organic state variables expressed 
in COD units. Kinetic parameters were assigned values following the numerical example in the article 
by Reichert et al. (2001). 

Influent concentrations of all state variables were set to values characteristic for raw sewage. Many 
state variables were assigned values according to the constant influent specified within the BSM1 
framework (Table 5). However, several RWQM1 state variables were not explicitly defined in BSM1. 
Those state variables were assigned values taken form other sources as presented later in this section. 
Influent data taken from the BSM1 framework are presented in Table 13.
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Table 13. Influent concentrations taken from the BSM1 framework

State 
variable

Influent 
concentration

Unit Description

SS 69.5 g(COD)·m-3 Readily biodegradable substrate 

SI 30 g(COD)·m-3 Inert dissolved organic substrate 

SNH 31.56 g(N)·m-3 Ammonium plus ammonia 

SNO 0 g(N)·m-3 Nitrate plus nitrite 

SO2 0 g(O)·m-3 Dissolved oxygen 

XH 28.17 g(COD)·m-3 Heterotrophic bacteria 

XA 0 g(COD)·m-3 Autotrophic bacteria 

XS 202.32 g(COD)·m-3 Slowly biodegradable substrate 

XI 51.2 g(COD)·m-3 Inert particulate organic substrate 

The ammonium and ammonia concentrations (SNH4 and SNH3) defined as state variables in RWQM1 
were calculated from the ammonium plus ammonia concentration (SNH) using the pH value and the 
formulae for chemical equilibria according to 

S NH4 = S NH⋅(1+
K eq , N

S H
)
−1

,

S NH3 = S NH⋅(1+
S H

K eq , N
)
−1 (44)

With SH as the hydrogen concentration and Keq,N as the equilibrium constant equal to 3.88e-7 g(H)·m-3 
(Reichert et al., 2001).

The concentration of dissolved oxygen was set equal to 0 g(O)·m-3 as specified within the BSM1 
framework. This concentration was close to other values reported in literature. Mashauri and Kayombo 
(2002) measured the dissolved oxygen concentration of raw sewage and found concentrations ranging 
from 0.2 g(O)·m-3 to 1.08 g(O)·m-3. Henze et al. (1995) present a typical range of dissolved oxygen in 
municipal wastewater as 0.0 g(O)·m-3 to  0.5 g(O)·m-3.

State variables taken from sources other than the BSM1 framework are presented in Table 14.
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Table 14. Influent concentrations taken from sources other than the BSM1 framework

State variable Influent 
concentration

Unit Description

pH 7 - pH value

SHCO3 84 g(C)·m-3 Bicarbonate 

SCO2 21 g(C)·m-3 Carbon dioxide 

SCO3 0.035 g(C)·m-3 Carbon trioxide 

SCa 55 g(Ca)·m-3 Calcium 

SHPO4 + SH2PO4 3.2 g(P)·m-3 Hydrogen phosphate plus dihydrogen phosphate 

XALG 0 g(COD)·m-3 Algae 

XCON 0 g(COD)·m-3 Consumers (zoo-plankton)

XP 0 g(P)·m-3 Phosphorous adsorbed to particles 

The concentrations of hydrogen and hydroxide ions (SH and SOH) were calculated from the pH value 
according to

sH = 1000⋅10−pH ,

SOH =
K eq , w

S H

(45)

with Keq,w as the equilibrium constant equal to 6.84e-9 g(H)²·m  ⁻⁶ (Reichert et al., 2001). A pH value of 
7 was used. For comparison, the pH value of raw sewage has been measured to be between 7.04 and 
7.32 (Mashauri and Kayombo, 2002). 

The bicarbonate concentration (SHCO3) was set to make the alkalinity match the value used within the 
BSM1 framework, that is 7 mol·m ³. Total alkalinity is calculated according to ⁻

Alkalinity = mHCO 3
─+2⋅mCO3

2─+mB (OH )4

─+mH 3 SiO4
─+mHS─+morganic anions+mOH─−mH + (46)

with mi as the molal concentration of ion i (Drever, 1997). Out of the 8 ions affecting the total alkalinity 
only bicarbonate, carbon trioxide, hydrogen and hydroxide were included as RWQM1 state variables. 
The concentration of bicarbonate is much larger than the total concentration of carbon trioxide, 
hydrogen and hydroxide, and will hence dominate the alkalinity. The bicarbonate concentration was set 
to 84 g(C)·m-3, which corresponds to an alkalinity of 7 mol·m-3.

The concentrations of carbon dioxide, carbon trioxide and calcium (SCO2, SCO3 and SCa) were calculated 
from the bicarbonate concentration, the pH value and the formulae for chemical equilibria according to 

S CO2 =
S H⋅S HCO3

K eq, 1

, (47)

S CO3 =
S HCO3⋅K eq ,2

S H

, (48)
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S Ca =
K eq , s0

S CO3
(49)

with SH as the hydrogen concentration and Keq,1, Keq,2 and Keq,s0 as the equilibrium constants equal to 
4.15e-4 g(H)·m-3, 4.16e-8  g(H)·m-3 and 1.94 g(Ca)·g(C)·m-6 , respectively (Reichert et al., 2001). 
Equation (47) yielded a carbon dioxide concentration of 21 g(C)·m-3. This concentration was not very 
close to other values reported in literature. Mashauri and Kayombo (2002) measured the carbon dioxide 
concentration in raw sewage to 6 ± 5.45 g(C)·m-3 and Carberry and Greene (1992) assumed an influent 
carbon dioxide concentration of 15.25 g(C)·m-3. Equation (48) yielded a carbon trioxide concentration 
of 0.035 g(C)·m-3. Recalculating the total alkalinity including the concentration of carbon trioxide, 
hydrogen and hydroxide yielded a value of 7.01 mol·m-3, which was considered sufficiently close to the 
value used in BSM1.

A typical value of the total concentration of inorganic phosphorous in residential untreated wastewater 
has been reported as 10 g·m-3 (Burks and Minnis, 1994). This corresponds to a concentration of about 
3.2 g(P)·m-3 assuming all inorganic phosphorous to appear as hydrogen phosphate and dihydrogen 
phosphate. This concentration lies within the typical range for raw sewage given by Henze et al. 
(1995). The concentrations of hydrogen phosphate and dihydrogen phosphate were calculated from this 
concentration and the pH value, using the equilibrium formulae

S HPO4 = S PO4⋅(1+
S H

K eq, P
)
−1

,

S H2PO4 = S PO4⋅(1+
K eq , P

S H
)
−1 (50)

with SPO4 as the total concentration of inorganic phosphorous, SH as the hydrogen concentration and 
Keq,P as the equilibrium constant equal to 6.19e-5 g(H)·m-3 (Reichert et al., 2001).

The concentration of algae in the sewage system was assumed to be negligible. This assumption agrees 
with observations of Mashauri and Kayombo (2002). The concentration of consumers in the sewage 
system was also assumed to be negligible. 

5.3 EVALUATION OF THE ACTIVATED SLUDGE MODEL BASED ON THE RIVER 
WATER QUALITY MODEL NO. 1

In order to evaluate the RWQM1 based activated sludge model described in section 5.2 it was 
compared to the ASM1 ditto, described in section 4.2. The algae population of the RWQM1 set-up was 
set to zero making the model describe the same kind of system as the ASM1 set-up, that is an activated 
sludge process based on heterotrophic and autotrophic bacteria. Consistency between the two models 
was considered to indicate a high quality of the RWQM1 set-up. Two different scenarios were 
simulated in order to evaluate different aspects of the system dynamics. The first scenario was focused 
on the aerobic growth of both heterotrophic and autotrophic bacteria and the second scenario was 
focused on the anoxic growth of heterotrophic bacteria. All simulations were carried out with an ode15s 
solver and a relative tolerance of 1e-13. The system dynamics were elucidated by applying a step 
increase of 50 % to the inflow magnitude, or by applying a sinusoidal inflow magnitude with a period 
of one day and an amplitude of 50 % of the initial inflow magnitude. The evaluation was based on data 
from the water basin.
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5.3.1 Model configurations

The influent concentrations of soluble and particulate organic nitrogen (SND and XND) used in the ASM1 
set-up had to be changed to comply with the RWQM1 influent data. Soluble and particulate organic 
nitrogen were not explicitly defined within the RWQM1 set-up. However, they could be calculated by 
multiplying the concentrations of readily and slowly biodegradable substrate (SS and XS) with the 
corresponding nitrogen mass fraction. The nitrogen mass fraction was by default equal to 0.034 for 
both readily and slowly biodegradable substrate.

Aerobic scenario

Model set-up, RWQM1:

• Aeration was modelled according to the second scenario described in section 5.1. The KLaO2 
value for aeration was set equal to 219 d-1. This value made the combined effect of aeration and 
water-atmosphere gas exchange equal the KLa value of 240 d-1 used in the ASM1 set-up.

Model set-up, ASM1:

• Aeration was modelled by setting the KLa value equal to 240 d-1. The saturation value was 
changed from its default value of 8 g(O)·m-3 to 8.736 g(O)·m-3 for consistency with the 
RWQM1 set-up.

• The influent concentrations of soluble and particulate organic nitrogen (SND and XND) were 
changed to comply with the influent concentrations used in the RWQM1 set-up. New values 
were calculated by multiplying the concentrations of readily and slowly biodegradable substrate 
with the nitrogen mass fraction as defined in the RWQM1 set-up. The concentration of soluble 
organic nitrogen was hence changed from 6.95 g(N)·m-3 to 2.363 g(N)·m-3 while the 
concentration of particulate organic nitrogen was changed from 10.59 g(N)·m-3 to 
6.879 g(N)·m-3.

Anoxic scenario

Model set-up, RWQM1:

• Neither aeration nor carbon dioxide injection was modelled following the set-up of the first 
scenario described in section 5.1. The KLaO2 value defining the water-atmosphere oxygen 
exchange was set to 0, prohibiting any oxygen from entering the water column. This was done 
for consistency with the ASM1 set-up.

• The influent concentration of nitrate plus nitrite was set to 10 g(N)·m-3 in order to allow 
denitrification in the absence of nitrification. The nitrate concentration was assumed to be ten 
times the nitrite concentration.

Model set-up, ASM1:

• No aeration was modelled (KLa value equal to 0 d-1).

• The influent concentration of nitrate plus nitrite was changed to 10 g(N)·m-3 to comply with the 
influent data used in the RWQM1 set-up.

• The influent concentrations of soluble and particulate organic nitrogen (SND and XND) was kept 
at 2.36 g(N)·m-3 and 6.88 g(N)·m-3, respectively,  to comply with the influent data used in the 
RWQM1 set-up. 
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5.3.2 Evaluation results

Simulations of the aerobic scenario revealed that the RWQM1 set-up failed to describe most 
characteristics of the aerobic dynamics of an activated sludge process. However, some parts of the 
simulation output were consistent with the ASM1 set-up ditto. The model estimated a relatively high 
phosphorous concentration, in line with the ASM1 assumption of phosphorous as a non-limiting 
substrate. The pH estimation of the RWQM1 set-up ranged between 6.6 and 7.2, also in line with the 
alkalinity estimation of the ASM1 set-up, ranging between 2.6 mol·m-3 and 2.9 mol·m-3 (an alkalinity 
above 1 mol·m-3 indicates a stable pH above 6 as stated in section 3.1). 

Simulation output inconsistencies were prominent in several state variables. Within the RWQM1 set-up 
the concentrations of heterotrophic and autotrophic bacteria decreased after an initial population 
growth, contrary to the strict increase of the ASM1 set-up (Figure 6). System dynamics of the RWQM1 
set-up were, in contrast to the ASM1 set-up, subject to substrate-consumer interactions. Consumers, 
that is zoo-plankton, feed on slowly biodegradable substrate, heterotrofic bacteria, autotrophic bacteria, 
and algae. An increase in one of those substrates may yield an increase in the consumer concentration. 
The increased consumer concentration will in turn result in heavier predation and grazing and a 
consequent decrease in all feed substrates. This interaction explains why the concentrations of 
heterotrophic and autotrophic bacteria decreased as a result of the step increase in inflow magnitude. 
The steady state values of nitrate plus nitrite and ammonium plus ammonia changed within the 
RWQM1 set-up, but not within the ASM1 set-up (Figure 6). This was a result of the autotrophic 
washout that occurred in the RWQM1 set-up but not in the ASM1 set-up. A stable concentration of 
autotrophic bacteria is needed in order to transform ammonium and ammonia to nitrate and nitrite. 

The RWQM1 set-up failed to estimate the magnitude of several state variables. In absolute numbers, 
this is most obvious in the concentration of heterotrophic bacteria. The total concentration of 
particulate matter (XH+XA+XCON+XS+XI) was within the ASM1 set-up estimated to 8 300 g(COD)·m-3 
prior the step and 5 600 g(COD)·m-3 after the step. The corresponding concentrations estimated within 
the RWQM1 set-up were 4 500 g(COD)·m-3 and 3 400 g(COD)·m-3.

Simulations of the aerobic scenario with a sinusoidal influent magnitude yielded a relatively good 
model performance as compared to simulations with a step increase (Figure 7). The major 
inconsistencies between the two models were found in state variable magnitude rather than in system 
dynamics. The swift oscillations prohibited a permanent increase in slowly biodegradable substrate 
why the consumer concentration was kept relatively low throughout the simulation.
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Simulations of the anoxic scenario with a 50 % step increase in the inflow magnitude revealed that the 
RWQM1 set-up failed to describe most characteristics of the anoxic dynamics of an activated sludge 
process. However, some parts of the simulation output were consistent with the ASM1 set-up ditto. The 
RWQM1 set-up estimated a relatively high phosphorous concentration, in line with the ASM1 
assumption of phosphorous as a non-limiting substrate. The pH estimation of the RWQM1 set-up was 
close to 7.0 throughout the simulation, also in line with the alkalinity estimation of the ASM1 set-up 
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Figure 6. Comparison between simulation output data from the ASM1 set-up (solid) and the RWQM1 
set-up (dashed). Aerobic scenario with a 50 % step increase in the inflow magnitude.

Figure 7. Comparison between simulation output data from the ASM1 set-up (solid) and the 
RWQM1 set-up (dashed). Aerobic scenario with a sinusoidal inflow magnitude.



that was close to 7.7 mol·m-3. The most important inconsistencies between the two models were found 
in the state variables of readily and slowly biodegradable substrate (Figure 8).

Firstly, the relationship between the two state variables differed between the two model set-ups. The 
RWQM1 set-up yielded higher concentrations of readily biodegradable substrate than of slowly 
biodegradable substrate, while the opposite was true within the ASM1 set-up. Secondly, the 
concentration of slowly biodegradable substrate was 32 times bigger within the ASM1 set-up than 
within the RWQM1 set-up. Both inconsistencies were believed to be caused by the combined effect of 
two different reasons. Firstly, the hydrolysis process of RWQM1, presented in equation (42), was 
believed to be an oversimplification. The only variables included in that process were the concentration 
of slowly biodegradable substrate and temperature. ASM1 contains a more complicated hydrolysis 
process dependent on the availability of electron acceptors, as presented in equation (34). This 
dependency prohibit extensive hydrolysis in the absence of oxygen and nitrate, and consequently the 
transformation of slowly biodegradable substrate into readily biodegradable substrate. Secondly, 
according to the RWQM1 set-up slowly biodegradable substrate may only be produced through the 
death of algae, the growth of consumers and the death of consumers. Algae were not included in the 
simulations and the concentration of consumers was zero due to the anoxic environment. Slowly 
biodegradable substrate was therefore only added to the system through the influent. This approach was 
not in line with ASM1 in which slowly biodegradable substrate may be produced both in aerobic and in 
anoxic environments through bacterial decay.
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Figure 8. Comparison between simulation output data from the ASM1 set-up (solid) and the 
RWQM1 set-up (dashed). Anoxic scenario with a 50 % step increase in the inflow magnitude.



6 ADAPTING THE ACTIVATED SLUDGE MODEL BASED ON THE RIVER 
WATER QUALITY MODEL NO. 1 TO A WASTEWATER TREATMENT 
ENVIRONMENT

The results presented in sub-section 5.3.2 revealed that the original RWQM1 set-up failed to describe 
an activated sludge process. The RWQM1 set-up was therefore adjusted in order to make it mimic the 
system dynamics of an activated sludge process more accurately. The aim was in other words to 
increase the consistency between the RWQM1 set-up presented in chapter 5 and the ASM1 set-up 
presented in chapter 4. Since the ASM1 set-up has been shown to describe an activated sludge process 
rather well, as presented in section 4.2, consistency between the two models was considered to indicate 
high model performance of the RWQM1 set-up. The algae dynamics of RWQM1 were excluded in 
order to allow a straightforward comparison. 

Three different measures were taken in order to improve the performance of the RWQM1 set-up. The 
first measure was to manually change the hydrolysis process of the RWQM1 set-up, the second 
measure was to optimize some parameters through linear system identification, and the third measure 
was to optimize the same parameters through non-linear system identification.

6.1 HYDROLYSIS

The hydrolysis process describes how fast slowly biodegradable substrate is turned into readily 
biodegradable substrate. The original hydrolysis process of RWQM1 presented in equation (42) was 
merged with the corresponding but more complicated process of ASM1 presented in equation (34). 
This was done based on the assumption that the hydrolysis process of RWQM1 was an 
oversimplification. The new process that was included in the RWQM1 set-up was defined as 

k hyd⋅eβhyd ⋅(T −T 0)⋅
X S / X H

K X+ X S / X H

⋅( S O2

KO2+SO2

+ηh⋅
KO2

K O2+S O2

⋅
S NO3

K NO+S NO3
)⋅X H (51)

with βhyd equal to 0.07 °C-1 and T0 equal to 20 °C following Reichert et al. (2001). ηh was set equal to 
0.8 and the half saturation coefficients KX, KO2 and KNO were set equal to 0.1, 0.2 g(O)·m-3 and 
0.5 g(N)·m-3, respectively, as in the BSM1 framework (Alex et al., 2008a). The updated hydrolysis 
process was evaluated through simulations of the aerobic and the anoxic scenarios described in sub-
section 5.3.1. System dynamics were elucidated through a 50 % step increase in the inflow magnitude. 

The evaluation revealed that the adjustment of the hydrolysis process improved the consistency 
between the RWQM1 set-up and the ASM1 set-up in terms of readily and slowly biodegradable 
substrate (Figure 9). The largest improvement appeared in the state variable of slowly biodegradable 
substrate in the anoxic scenario. The adjustment yielded no significant changes in other state variables 
except for the concentration of consumers in the aerobic scenario which was decreased somewhat.
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6.2 SYSTEM IDENTIFICATION – THE LEAST SQUARES METHOD

The least squares method is a tool used to estimate the unknown parameters of a regression model, 
which is formulated as

ŷ (t) = ϕ1(t)⋅θ1+ϕ2(t)⋅θ2+...+ϕn(t)⋅θn = ϕT
(t )⋅θ (52)

with ŷ(t) as a prediction of the observed output, φT(t) as a row vector with the known regression model 
input (regressors), and θ as a column vector with unknown parameters. This tool was used to improve 
the performance of the RWQM1 set-up without changing the model structure. 

The aim of the least squares method is to calculate the vector of unknown parameters θ minimizing the 
cost function 

V (θ ) = ∑
t=1

N

( y ( t)− ŷ (t ))2
= ∑

t=1

N

( y (t )−ϕT
(t)⋅θ)

2 (53)

with y(t) as the observed output and ŷ(t) as its approximation, that is the regression model output. 
Minimizing the cost function is the same as maximizing the consistency between the observed output 
and the regression model output. The cost function presented in equation (53) is minimized by 
choosing θ according to

θ = [∑
t=1

N

ϕ(t )⋅ϕ T (t)]
−1
⋅∑

t=1

N

ϕ(t)⋅y ( t) . (54)

A derivation of equation (54) is provided by Ljung and Glad (2004). 

In practical applications of the least squares method it is often convenient to express the regression 
model (52) in matrix form according to 

Ŷ = Φθ (55)
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Figure 9. Comparison between simulation output data from the ASM1 set-up (solid) and the RWQM1 
set-up (dashed). Simulations conducted with an updated hydrolysis process. Aerobic and anoxic 
scenarios with a 50 % step increase in the inflow magnitude.



with Ŷ as an approximation of the N·1 vector

Y = [ y (1) ... y (N )]
T , (56)

Φ as the N·n matrix

Φ = [
ϕ1(1) ... ϕn(1)

...
ϕ1(N ) ... ϕn(N )] , (57)

and θ as the n·1 vector

θ = [θ1 ... θn]
T . (58)

The matrix equivalent to equation (54) can then be formulated as 

θ = (Φ T Φ)
−1 Φ T Y . (59)

Equation (59) can be solved in Matlab using the backslash operator according to 

θ = Φ \ Y . (60)
The unknown parameter set θ can only be estimated with the least square method if ΦTΦ is invertible 
(Ljung and Glad, 2004). It is not computationally possible to obtain a robust approximation if the 
regressor matrix Φ is singular or close to singular. The condition number of Φ can be computed in 
order to evaluate the accuracy of the approximation. A high condition number indicates low accuracy 
according to 

c = log 10(cond (Φ)) (61)

with cond(Φ) as the conditional number of Φ and c indicating how many significant digits of the 
approximated parameter set that may exhibit rounding errors (Chapra, 2008).

6.2.1 Regression models

The basic idea was to construct a regression model based on the differential equations of RWQM1 and 
to estimate the unknown parameters using the least squares method with output data from the ASM1 
set-up. The aim was to find parameter values that would make the RWQM1 set-up mimic the ASM1 
set-up to the largest possible extent, maximizing the consistency between y(t), based on the ASM1 set-
up output, and the regression model output ŷ(t).

Two different regression models were constructed based on a selection of differential equations from 
the RWQM1 set-up. The updated hydrolysis process described in section 6.1 was kept as an integral 
part of the model, and hence included in the regression models. Each included differential equation was 
rewritten to take the form of equation (52). A backward finite-difference formula was used to 
approximate the derivatives of the differential equations according to 

dS
dt

=
S i

−S i−1

h
(62)

with S as a state variable, superscripts denoting the discrete time step and h denoting the time step 
length. 

The system identification was focused on the estimation of seven kinetic parameters governing the 
growth and respiration of heterotrophic bacteria and of first stage nitrifiers, the respiration and death of 
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consumers and the hydrolysis (Table 15). The choice of which parameters to include was strictly 
limited since the model had to be linear in terms of all included parameters. It was hence not possible to 
include any stoichiometric parameters or the kinetic parameters that were part of Monod functions. An 
other limitation was that the unknown parameters had to be chosen so that the regressors became 
linearly independent in order to make the condition number of the regressor matrix Φ sufficiently low.

Table 15. Parameters estimated with the least squares method

kgro,H,aer kresp,H,aer kgro,N1,aer kresp,N1 kresp,CON kdeath,CON khyd

Notation in regression model θ1 θ2 θ3 θ4 θ5 θ6 θ7

Default value [d-1] 2 0.2 0.8 0.05 0.05 0.05 3

The steps taken to rewrite the differential equation governing the change of readily biodegradable 
substrate (SS) are described below. The RWQM1 differential equation governing the change of the state 
variable was defined as 

dS S

dt
= e1,1⋅p1+e2,1⋅p2+e4,1⋅p4+e5,1⋅p5+e22,1⋅p22+

Q
V

⋅(S S ,in−S S) (63)

with ei,1 as the stoichiometric coefficient linking process i to state variable 1 (that is SS), pi as process 
number i, Q as the flow magnitude, V as the basin volume, SS as the concentration of readily 
biodegradable substrate within the basin and SS,in as the ditto within the inflow. Processes p1, p2, p4, p5 

and p22 are presented in equation (35) through equation (38), and in equation (51), respectively.  A 
discretization of equation (63) yields 

S S
t
−S S

t−1

h
= e1,1⋅p1

t−1
+e2,1⋅p2

t−1
+e4,1⋅p4

t−1
+e5,1⋅p5

t−1
+e22,1⋅p22

t−1
+

Q t−1

V
⋅(S S ,in

t−1
−S S

t−1
) (64)

with superscripts denoting the discrete time step. Examination of the processes included in equation 
(64), presented in section 3.3, reveals that the equation contains the two unknown parameters kgro,H,aer 
and  khyd. The processes p1 and p2 represent the aerobic growth of heterotrophs on ammonium and 
nitrate, respectively. Both of them include the unknown parameter kgro,H,aer. Process p22 represents 
hydrolysis and it includes the unknown parameter khyd. Multiplying both sides of (64) with the time step 
length and moving all terms to the left hand side, apart from those containing unknown parameters 
yields 

S S
t
−S S

t−1
−h⋅

Qt−1

V
⋅(S S , in

t−1
−S S

t−1
)−h⋅e4,1⋅p4

t−1
−h⋅e5,1⋅p5

t−1
=

= h⋅e1,1⋅p1
t−1

+h⋅e2,1⋅p2
t−1

+h⋅e22,1⋅p22
t−1.

(65)

For consistency with equation (52) the unknown parameters were explicitly written according to 

S S
t
−S S

t−1
−h⋅

Qt−1

V
⋅(S S , in

t−1
−S S

t−1
)−h⋅e4,1⋅p4

t−1
−h⋅e5,1⋅p5

t−1
=

=
h

k gro , H ,aer

⋅(e1,1⋅p1
t−1

+ e2,1⋅p2
t−1

)⋅k gro , H , aer+
h

k hyd

⋅e22,1⋅p22
t−1

⋅k hyd .
(66)

The notation of equation (52) may now be introduced and this is done in equation (67). The parameters 
kgro,H,aer and khyd in equation (66) represents the unknown parameters θ1 and θ7 in the regression model. 
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All included differential equations were rewritten following the steps above. The derivations are 
however omitted.

The regression models were made as large as possible in terms of the number of included differential 
equations, aiming for a least squares method optimizing the unknown parameters with respect to as 
many state variables as possible. The number of included differential equations was limited by the fact 
that they had to be defined both in RWQM1 and in ASM1. They had to be defined in RWQM1 since 
the regression models were to be based on RWQM1 and they had to be defined in ASM1 since the 
system identification was to be conducted with output data from ASM1. Some state variables of 
RWQM1 had to be merged in order to obtain consistency. This was the case with the state variables of 
nitrate and nitrite (SNO3 and SNO2), ammonium and ammonia (SNH3 and SNH2), and first and second stage 
nitrifiers (XN1 and XN2). Those state variables were merged in order to match the ASM1 state variables 
of nitrate plus nitrite (SNO), ammonium plus ammonia (SNH) and autotrophic bacteria (XA). Also, the 
ASM1 state variables of particulate inert organic matter (XI) and particulate products arising from 
biomass decay (XP) were merged in order to match the RWQM1 state variable of inert particulate 
matter (XI). The differential equations included in the first regression model were those governing the 
change of readily and slowly biodegradable substrate (SS and XS), inert particulate organic matter (XI), 
heterotrophic and autotrophic bacteria (XH and XA), dissolved oxygen (SO2), nitrate plus nitrite (SNO), 
and ammonium plus ammonia (SNH). That is all differential equations that were defined in both models, 
except the one governing the change of soluble inert organic matter (SI). This differential equation was 
not included because the concentration of soluble inert organic matter was unaffected by biochemical 
processes. The second regression model was extended to include the differential equation governing the 
change of consumers (XCON). This state variable was not explicitly defined within the ASM1 set-up, it 
was therefore approximated and the approximation method is presented in sub-section 6.2.2. 

The first regression model is presented in equation (67) through (74) and the second is presented in 
equation (67) through (75). They are hence identical except that the second regression model includes 
one additional differential equation.

The part of the regression models linked to the change of readily biodegradable substrate (SS) was 
defined as  

ySS
(t) = S S

t
−SS

t−1
−h⋅

Qt−1

V
⋅(SS ,in

t−1
−S S

t−1
)−h⋅e4,1⋅p4

t−1
−h⋅e5,1⋅p5

t−1 ,

ϕ1
SS

(t) =
h

k gro , H ,aer

⋅(e1,1⋅p1
t−1

+ e2,1⋅p2
t−1

) ,

ϕ7
SS
( t) =

h
k hyd

⋅e22,1⋅p22,
t−1

ϕi
SS
(t ) = 0, i = 2, 3, 4, 5, 6.

(67)

with h as the time step length, ei,j as the stoichiometric coefficient linking process i to state variable j, pi 
as process number i and t as the discrete sample time. All processes are presented in Appendix D. 
However, the indexes of equation (67) refer to the process notation of the S-function presented in 
Appendix E. All stoichiometric coefficients are presented in Appendix C.

The part of the regression models linked to the change of inert particulate organic matter (XI) was 
defined as
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y XI
(t ) = X I

t
−X I

t−1
−h⋅

Q t−1

V
⋅( X I , in

t−1
−X I

t−1
)−h⋅(e6,22⋅p6

t−1
+e10,22⋅p10

t−1
) ,

ϕ2
XI
(t ) =

h
k resp , H ,aer

⋅e3,22⋅p3
t−1 ,

ϕ4
XI
(t ) =

h
k resp , N1

⋅e8,22⋅p8
t−1 ,

ϕ5
XI

(t) =
h

k resp ,CON

⋅e20,22⋅p20
t−1 ,

ϕ6
XI

(t) =
h

k death ,CON

⋅e21,22⋅p21
t−1 ,

ϕi
XI (t) = 0, i = 1, 3, 7.

(68)

The part of the regression models linked to the change of slowly biodegradable substrate (XS) was 
defined as 

y XS
(t) = X S

t
−X S

t−1
−h⋅

Q t−1

V
⋅( X S ,in

t−1
−X S

t−1
)−

−h⋅(e16,21⋅p16
t−1

+e17,21⋅p17
t−1

+e18,21⋅p18
t−1

+e19,21⋅p19
t−1

) ,

ϕ6
XS

(t ) =
h

k death ,CON

⋅e21,21⋅p21
t−1 ,

ϕ7
XS

( t) =
h

k hyd

⋅e22,21⋅p22
t−1 ,

ϕi
XS

(t) = 0, i = 1, 2, 3, 4, 5.

(69)

The part of the regression models linked to the change of heterotrophic bacteria (XH) was defined as

y XH
(t) = X H

t
−X H

t−1
−h⋅

Qt−1

V
⋅( X H ,in

t−1
−X H

t−1
)−

−h⋅(e4,16⋅p4
t−1

+e5,16⋅p5
t−1

+e6,16⋅p6
t−1

+e17,16⋅p17
t−1

) ,

ϕ1
XH

(t) =
h

k gro , H ,aer

⋅(e1,16⋅p1
t−1

+ e2,16⋅p2
t−1

) ,

ϕ2
XH

(t ) =
h

k resp , H ,aer

⋅e3,16⋅p3
t−1 ,

ϕi
XH

(t) = 0, i = 3, 4, 5, 6, 7.
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The part of the regression models linked to the change of autotrophic bacteria (XA) was defined as
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(71)

40



The part of the regression models linked to the change of dissolved oxygen (SO2) was defined as
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The part of the regression models linked to the change of nitrate plus nitrite (SNO) was defined as

ySNO
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(73)

The part of the regression models linked to the change of ammonium plus ammonia (SNH) was defined 
as
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The part of the second regression model linked to the change of consumers (XCON) was defined as
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The different parts of the two regression models as presented in equation (67) through (75) were 
expressed in matrix form according to 

Y i
= [ y i

(1) ... y i
( N )]

T ,

Φ i
= [

ϕ1
i
(1) ... ϕn

i
(1)

...
ϕ1

i
(N ) ... ϕn

i
(N )] ,

i = S S , X I , X S , X H , X A , S O2 , S NO , S NH , X CON ,

(76)

and merged into larger regression models according to 

Y = [Y SS Y XI Y XS Y XH Y XA Y SO2 Y SNO Y SNH
]
T ,

Φ = [Φ SS Φ XI Φ XS Φ XH Φ XA Φ SO2 Φ SNO Φ SNH
]
T ,

(77)

and

Y = [Y SS Y XI Y XS Y XH Y XA Y SO2 Y SNO Y SNH Y XCON
]
T ,

Φ = [Φ SS Φ XI Φ XS Φ XH Φ XA Φ SO2 Φ SNO Φ SNH Φ XCON
]
T ,

(78)
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respectively. This formulation enabled estimation of the seven unknown parameters presented in Table 
15 with respect to the optimization of all included state variables simultaneously.

Both regression models were validated by estimating the unknown parameters presented in Table 15 
using equation (60) with input and output data from the RWQM1 set-up. Input and output data were 
taken from a simulation of the aerobic scenario described in sub-section 5.3.1. A pseudo random binary 
sequence was applied to the inflow magnitude in order to achieve an excitation of all included state 
variables (Figure 10).

Both regression models returned parameter values close to the true ones (Table 16). The regressor 
matrix (Φ) of the first regression model had a condition number of 27, indicating a robust solution. The 
corresponding value for the second regression model was 26, also indicating a robust solution. Since 
the parameter approximations were so close to the true parameter values, both proposed regression 
models were considered correct. 

Table 16. Parameter approximations obtained by applying the least squares method to simulation 
output data from the RWQM1 set-up

kgro,H,aer kresp,H,aer kgro,N1,aer kresp,N1 kresp,CON kdeath,CON khyd

True parameter values 2.0000 0.2000 0.8000 0.0500 0.0500 0.0500 3.0000

First regression model 2.0001 0.2001 0.8000 0.0499 0.0494 0.0504 3.0002

Second regression model 2.0001 0.2001 0.7999 0.0498 0.0495 0.0504 3.0003

6.2.2 Assumptions done to allow usage of the least squares method with simulation 
data from the ASM1 set-up

Some of the state variables included in the regression models were not defined in the ASM1 set-up. 
This prohibited a straightforward calculation of the regression model matrices Y and Φ from the ASM1 
simulation output. The concerned state variables were SH, SNO3, SNO2, XN1, XN2, SHPO4, SH2PO4 and XCON, 
from now on referred to as the unknown state variables. In order to conduct the system identification it 
was necessary to approximate them from other state variables included in the ASM1 set-up. Five 
assumptions were defined in order to enable such approximations. All assumptions were based on the 
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Figure 10. Magnitude of the inflow to the activated sludge basin equal to the sum of 
the inflow to the wastewater treatment plant and the sludge recirculation. The 
inflow to the wastewater treatment plant was described by a pseudo random binary 
sequence.



output from a simulation of the RWQM1 set-up according to the aerobic scenario described in 
sub-section 5.3.1, with default parameter values and an inflow magnitude created with the pseudo 
random binary sequence (Figure 10). A correlation analysis was conducted to investigate the degree of 
correlation between the unknown state variables and state variables also included in ASM1. One or two 
regression models were proposed for each unknown state variable, describing its value as a function of 
one or several known state variables. The regression models were created in Matlab using the regress 
function according to 

[b ,bint , r , rint , stats ] = regress(S 1 , ones (length(S ) , 1) S2 S3 ... S n) (79)

with b as a vector of regression coefficients, bint as the 95 % confidence intervals for b, r as a vector of 
residuals, rint as a matrix of intervals that can be used to identify outliers, and stats as a vector 
including the R² statistic, the F statistic, the p value and an estimate of the error variance. The first 
argument S1 is the dependent variable of the regression model, that is the unknown state variable. The 
second argument represents the constant term of the regression model and argument S2 to Sn are the 
independent variables. They were chosen as the state variables also included in ASM1 that were 
strongly correlated with state variable S1.

1. The concentration of hydrogen was described as a first order function of heterotrophic and 
autotrophic bacteria according to 

S H = 1.2110⋅10−4
+2.6236⋅10−6

⋅X A−6.4428⋅10−8
⋅X H . (80)

The correlation analysis returned a relatively high correlation between the concentration of 
hydrogen and the concentration of heterotrophic bacteria (ρ = 0.64), and an even higher 
correlation between the concentration of hydrogen and the concentration of autotrophic bacteria 
(ρ = 0.78). All regression coefficient in equation (80) were significant at a significance level of 
0.05 and the R2 value of the proposed model was 0.65. Constraints were defined for the 
regression model application domain according to

0 ⩽ S H ⇔ 0 ⩽ 1.2110⋅10−4
+2.6236⋅10−6

⋅X A−6.4428⋅10−8
⋅X H ⇔

⇔ 6.4428⋅10−8
⋅X H −2.6236⋅10−6

⋅X A ⩽ 1.2110⋅10−4 .
(81)

2. Two regression models were proposed describing the concentrations of nitrate and nitrite as first 
order functions of the total concentration of nitrate plus nitrite according to

S NO3 = −1.2860+1.0258⋅S NO ,
S NO2 = 1.2860−0.0258⋅S NO . (82)

The correlation analysis returned a very high correlation between the concentration of nitrate 
and the total concentration of nitrate plus nitrite (ρ = 1.00), and a high correlation between the 
concentration of nitrite and the total concentration of nitrate plus nitrite (ρ = 0.90). All 
regression coefficients of equation (82) were significant at a significance level of 0.05 and the 
R2 values of the proposed models were 1.00 (nitrate) and 0.82 (nitrite). It was chosen to accept 
the nitrate regression model since it had the higher R2 value, and to describe the concentration 
of nitrite as the total concentration of nitrate plus nitrite minus the approximated concentration 
of nitrate. Constraints were defined for the regression model application domain according to

0 ⩽ S NO3 ⇔ 0 ⩽ −1.2860+1.0258⋅S NO ⇔ 1.2537 ⩽ S NO ,
S NO3 ⩽ S NO ⇔ −1.2860+1.0258⋅S NO ⩽ S NO ⇔ S NO ⩽ 43.3333.

(83)

3. Two regression models were proposed describing the concentrations of first and second stage 
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autotrophic nitrifiers as first order functions of the total concentration of autotrophic nitrifiers 
according to

X N1 = −0.4657+0.8318⋅X A ,
X N2=0.4657+0.1682⋅X A . (84)

The correlation analysis returned a very high correlation between the concentration of first stage 
nitrifiers and the total concentration of nitrifiers (ρ = 1.00), and a very high correlation between 
the concentration of second stage nitrifiers and the total concentration of nitrifiers (ρ = 0.99). 
All regression coefficients of equation (84) were significant at a significance level of 0.05 and 
the R2 values of the proposed models were 1.00 (first stage nitrifiers) and 0.99 (second stage 
nitrifiers). It was chosen to accept the first stage nitrifiers regression model since it had the 
higher R2 value, and to describe the concentration of second stage nitrifiers as the total 
concentration of autotrophic nitrifiers minus the estimated concentration of first stage nitrifiers. 
Constraints were defined for the regression model application domain according to

0 ⩽ X N1 ⇔ 0 ⩽ −0.4657+0.8318⋅X A ⇔ 0.5599 ⩽ X A. (85)

4. The total concentration of inorganic phosphorous, that is SHPO4 plus SH2PO4, was described as a 
first order function of nitrate plus nitrite, readily biodegradable substrate and slowly 
biodegradable substrate according to

S HPO4+S H2PO4 = −1.8602+0.1820⋅S NO+0.0643⋅X S−1.2109⋅S S . (86)

The correlation analysis returned a relatively high correlation between the total concentration of 
nitrate and nitrite, and the total concentration of inorganic phosphorous (ρ = 0.75), a somewhat 
lower correlation between the concentration of slowly biodegradable substrate and the total 
concentration of inorganic phosphorous (ρ = -0.63), and an even lower correlation between the 
concentration of readily biodegradable substrate and the total concentration of inorganic 
phosphorous (ρ = -0.59). All regression coefficients of equation (86) were significant at a 
significance level of 0.05 and the R2 value of the proposed model was 0.71. The concentrations 
of hydrogen phosphate and dihydrogen phosphate were calculated from the approximated 
hydrogen concentration and the approximated total concentration of inorganic phosphorous 
according to equation (50).

5. Two regression models were proposed describing the concentration of consumers. The first one 
described the concentration as a first order function of the concentration of inert organic matter 
while the other one described the concentration as a first order function of the concentration of 
inert organic matter and the total concentration of all substrates that consumers consume 
according to

X CON = −1.5384⋅102
+0.1696⋅X I , (87)

X CON = −1.8679⋅102
+0.2136⋅X I−0.0620⋅X sub ,

X sub = X H + X A+ X S .
(88)

The correlation analysis returned a high correlation between the concentration of consumers and 
the concentration of inert organic matter (ρ = 0.95), and a relatively low correlation between the 
concentration of consumers and the total concentration of all substrates that the consumers 
consume (ρ = 0.36). All regression coefficients of equation (87) and equation (88) were 
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significant at a significance level of 0.05 and the R2 values of the proposed models were 0.90 
(without Xsub) and 1.00 (with Xsub). It was chosen to accept the extended regression model that 
included Xsub since it had the higher R2 value. 

The concentrations of ammonium and ammonia were calculated from the approximated hydrogen 
concentration and the total concentration of ammonium and ammonia according to equation (44). 

6.2.3 Parameter approximations

The least squares method was used together with the two regression models presented in sub-section 
6.2.1 in order to approximate the unknown parameters presented in Table 15. As discussed in sub-
section 5.3.2 the RWQM1 set-up was unable to describe the production of slowly biodegradable matter 
in anoxic environments. The system identification was hence only focused on aerobic conditions. Input 
and output data were taken from a simulation of the ASM1 set-up according to the aerobic scenario 
described in sub-section 5.3.1. A pseudo random binary sequence was applied to the inflow magnitude 
in order to achieve an excitation of all included state variables (Figure 10). The unknown parameters 
were estimated using equation (60), and using the System Identification Toolbox in Matlab. In the 
System Identification Toolbox lower bounds were applied to the unknown parameters forcing them to 
take non-negative values. 

Application of the unbounded least squares method based on the first regression model presented in 
sub-section 6.2.1 returned unrealistic parameter values (Table 17). The parameters defining the 
respiration rate of heterotrophic bacteria, first stage nitrifiers and consumers were assigned negative 
parameter values. The condition number of the regressor matrix Φ was 119 indicating a relatively 
robust solution. The proposed regression model reproduced 80 % of the variation in the Y vector. 
However, Simulink simulations of the RWQM1 set-up based on the approximated parameter set 
returned unreasonable output data with large negative concentrations in several state variables.

Application of the bounded least squares method (conducted in Matlab's System Identification 
Toolbox) based on the first regression model presented in sub-section 6.2.1 returned a parameter set 
similar to the parameter set obtained in the unbounded application (Table 17). The main difference was 
that the three negative parameters were set to zero. The proposed regression model reproduced 64 % of 
the variation in the Y vector. Simulink simulations of the RWQM1 set-up based on the approximated 
parameter set returned reasonable output data without negative concentrations. The model performance 
was increased in terms of inert organic matter and ammonium plus ammonia, relatively unaffected in 
terms of heterotrophic bacteria, and decreased in terms of readily biodegradable substrate and 
consumers (Figure 11).

Table 17. Parameter approximations obtained by applying the least squares method based on the first 
regression model presented in sub-section 6.2.1 on simulation output data from the ASM1 set-up

Method kgro,H,aer kresp,H,aer kgro,N1,aer kresp,N1 kresp,CON kdeath,CON khyd

Unbounded 0.4815 -0.1053 0.3607 -0.3218 -0.0844 1.5243 2.2305

Bounded 0.4813 0  0.3189 0 0 1.4676 2.2219

46



Application of the unbounded least squares method based on the second (extended) regression model 
presented in sub-section 6.2.1 returned unrealistic parameter values (Table 18). The major difference 
from the parameter set obtained with the unbounded method based on the first regression model was 
that the kinetic parameter governing the respiration rate of consumers was decreased from -0.0844 to 
-0.7622. The condition number of the regressor matrix Φ was 117 indicating a relatively robust 
solution. The proposed regression model reproduced 80 % of the variation in the Y vector. Simulink 
simulations of the RWQM1 set-up based on the approximated parameter set returned reasonable output 
data without negative concentrations. The model performance was increased as compared to 
simulations with the default parameter set in terms of ammonium plus ammonia, slowly biodegradable 
substrate, heterotrophic bacteria and autotrophic bacteria, relatively unaffected in terms of dissolved 
oxygen and inert organic matter, and decreased in terms of nitrate plus nitrite and readily biodegradable 
substrate (Figure 12 and Figure 13). The concentration of consumers was well above zero throughout 
the simulation.

Application of the bounded least squares method (conducted in Matlab's System Identification 
Toolbox) based on the second (extended) regression model presented in sub-section 6.2.1 returned a 
parameter set similar to the parameter set obtained in the unbounded application (Table 18). The main 
difference was that the three negative parameters were set to zero. The proposed regression model 
reproduced 60 % of the variation in the Y vector. Simulink simulations of the RWQM1 set-up based on 
the approximated parameter set returned reasonable output data without negative concentrations. 
However, the concentration of consumers decreased to zero. 

47

Figure 11. Comparison between simulation output data from the ASM1 set-up (solid) and the RWQM1 
set-up simulated with the default parameter set (dashed) and the updated parameter set based on the 
bounded system identification conducted with the first regression model (dotted).



Table 18. Parameter approximations obtained by applying the least squares method based on the 
second (extended) regression model presented in sub-section 6.2.1 on simulation output data from the 
ASM1 set-up

Method kgro,H,aer kresp,H,aer kgro,N1,aer kresp,N1 kresp,CON kdeath,CON khyd

Unbounded 0.4703 -0.1039 0.3894 -0.1789 -0.7622 1.1858 2.1678

Bounded 0.4690 0 0.3894 0 0 1.1670 2.1600
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Figure 12. Comparison between simulation output data from the ASM1 set-up (solid) and the 
RWQM1 set-up simulated with the default parameter set (dashed) and the updated parameter set 
based on the unbounded system identification conducted with the second (extended) regression 
model (dotted).

Figure 13. Comparison between simulation output data from the ASM1 set-up (solid) and the 
RWQM1 set-up simulated with the default parameter set (dashed) and the updated parameter set 
based on the unbounded system identification conducted with the second (extended) regression 
model (dotted).



6.2.4 Evaluation of assumptions

In order to investigate to what extent the assumptions presented in sub-section 6.2.2 affected the results 
of the system identification an alternative set of assumptions was defined. It was in particular 
considered important to investigate if an alternative set of assumptions could yield a non-negative 
parameter approximation. The new assumptions were not based on output data from the RWQM1 set-
up. They were instead defined to cover a broad spectrum of theoretically possible relationships between 
the unknown state variables and state variables included in ASM1. Several different assumptions were 
defined for each unknown state variable resulting in a large amount of possible assumption 
combinations. 

1. The hydrogen concentration was either described as a constant value corresponding to pH 7, or 
as a first order function of heterotrophic and autotrophic bacteria according to equation (80). 

2. The concentration of nitrate was set to a fraction of the total concentration of nitrate plus nitrite 
equal to 0.5, 0.75, 0.9 or 0.99. The nitrite concentration was set equal to the remaining fraction.

3. The concentration of first stage nitrifiers was set to a fraction of the total concentration of 
nitrifiers equal to 0.5, 0.75, 0.9 or 0.99. The concentration of second stage nitrifiers was set 
equal to the remaining fraction.

4. The total concentration of inorganic phosphorous was set to 10 g(P)·m-3 in order to make sure 
that no processes were phosphorous limited. The concentrations of hydrogen phosphate and 
dihydrogen phosphate were calculated from the approximated hydrogen concentration and the 
total concentration of inorganic phosphorous according to equation (50).

5. The concentration of consumers was set to a fraction of the concentration of inert organic 
matter or as a fraction of the concentration of all substrates that consumers consume. The 
fractions were set equal to 0.01, 0.1, 0.25 or 0.5. 

The concentrations of ammonium and ammonia was, as before, calculated from the approximated 
hydrogen concentration and the total concentration of ammonium plus ammonia according to equation 
(44).

All combinations of the above presented assumptions were evaluated by applying the least squares 
method based on the second (extended) regression model presented in sub-section 6.2.1 on simulation 
output data from the ASM1 set-up. Input and output data were taken from a simulation of an aerobic 
scenario as described in sub-section 5.3.1. A pseudo random binary sequence was applied to the inflow 
magnitude in order to achieve an excitation of all included state variables (Figure 10). The evaluation 
showed that the assumptions affected the approximated parameter values to a large extent and that all 
included combinations yielded parameter sets with at least one negative parameter value.

6.3 SYSTEM IDENTIFICATION – NON-LINEAR PROGRAMMING

Non-linear system identification was, just like the least squares method, applied aiming to improve the 
RWQM1 set-up without changing the model structure. The Matlab function fmincon was used to 
minimize a cost function based on the relative error presented in equation (89). It was focused on the 
same seven kinetic parameters and the same nine state variables as was the least squares method based 
on the second (extended) regression model. As stated in sub-section 6.2.2, ASM1 does not include a 
state variable for the concentration of consumers. This concentration was therefore estimated according 
to equation (88). The updated hydrolysis process presented in section 6.1 was kept as an integral part of 
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the model. Lower bounds were applied to all unknown parameters so that they only could take non-
negative values. The identification was conducted on data from an aerobic scenario as described in sub-
section 5.3.1. 

The cost function was defined as 

V (θ ) = ∑
i=1

N

∑
j=1

J

erel
2 ,

erel =
y sim ,asm1

j
( i)− ysim , rwqm1

j
(i)

ȳsim , asm1
j

(i)
,

i = 1, 2, ... N ,

(89)

with j denoting the state variable (SS, XI, XS, XH, XA, SO2, SNO, SNH and XCON) and i denoting the discrete 
time step. Defining the cost function as a function of the relative error rather than the absolute error 
made all state variables equally important. A cost function based on the absolute error would optimize 
the unknown parameter set with respect to the strongest signals, for example inert organic matter and 
heterotrophic bacteria, at the expense of weaker signals such as readily biodegradable substrate and 
dissolved oxygen. A discussion on how the relative error may be used in linear system identification is 
provided by Tofallis (2007). 

The non-linear system identification was initially aimed at finding parameter values that would 
optimize the model performance at steady state. Both the ASM1 set-up and the RWQM1 set-up were 
simulated over 1 000 days using constant influent data as described in section 5.2. Only the last 
500 days were used in the cost function to ensure that all transients were excluded. The initial guess 
was set equal to the default parameter values presented in Table 15.

It was found that the non-linear system identification improved the model performance in terms of a 
cost function decrease from 260 with the default parameter values to 46 with the estimated parameter 
set (Table 20). The improvement was apparent in all state variables except inert organic matter and 
nitrate plus nitrite (Table 19). 
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Table 19. Steady state values under aerobic conditions according to the ASM1 set-up and the RWQM1 
set-up with default and estimated parameter values

State variable RWQM1 – default 
parameter values

RWQM1 – estimated 
parameter set

ASM1 Unit

Readily biodegradable 
substrate 

0.68 0.77 1.0 [g(COD)·m-3]

Inert organic matter 2100 2100 2300 [g(COD)·m-3]

Slowly biodegradable 
substrate 

35 59 59 [g(COD)·m-3]

Heterotrophic bacteria 990 1500 3000 [g(COD)·m-3]

Autotrophic bacteria 69 110 160 [g(COD)·m-3]

Dissolved oxygen 3.7 4.0 4.7 [g(O)·m-3]

Nitrate plus nitrite 30 28 30 [g(N)·m-3]

Ammonium plus ammonia 0.91 0.47 0.48 [g(N)·m-3]

Consumers 200 98 110 a [g(COD)·m-3]
a Calculated according to equation (88).

The estimated parameter set from the initial non-linear system identification was used as an initial 
guess in a new non-linear system identification aimed at optimizing the model performance over a step 
increase in the inflow magnitude. Both models were simulated over 1 300 days and the inflow 
magnitude was increased by a step of 25 % after 1 000 days. 

It was found that the second non-linear system identification improved the model performance in terms 
of a cost function decrease from 126 with the parameter values from the initial non-linear system 
identification to 82 with the new estimated parameter set (Table 20). Altogether the model performance 
was improved in terms of most state variables, for example those representing autotrophic bacteria, 
heterotrophic bacteria and consumers (Figure 14). However, the model performance was decreased in 
terms of the state variables representing nitrate plus nitrite and particulate inert organic matter (Figure 
14).

Table 20. Parameter sets estimated in the first and the second non-linear system identification

Method kgro,H,aer kresp,H,aer kgro,N1,aer kresp,N1 kresp,CON kdeath,CON khyd

Non-linear system identification 
aimed at steady state values

1.0896 0.1294 0.6488 0.0340 0.0177 0.1871 1.7512

Non-linear system identification 
aimed at system dynamics

1.0763 0.1522 0.7767 0.0026 0.0421 0.1452 1.8785
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Figure 14. Comparison between simulation output data from the ASM1 set-up (solid) and the RWQM1 
set-up simulated with the default parameter set (dashed) and the updated parameter set based on the 
second non-linear system identification (dotted). The ASM1 concentration of consumers was 
calculated according to equation (88).



7 INTRODUCING ALGAE DYNAMICS

7.1 DEVELOPMENT OF PROCESSES DESCRIBING ALGAL GROWTH

Processes describing algal growth were by default included in RWQM1 and they are presented in 
equation (39) and (40). These processes were defined to describe the algae dynamics of a river system. 
It was considered unlikely that they would describe the algae dynamics of an activated sludge process 
accurately because of the differences between the systems. Therefore, an alternative description of algal 
growth was developed based on the theory presented in section 2.2. The main structure of the original 
processes describing algal growth in RWQM1 was kept in order to avoid changes in the stoichiometric 
matrix. Hence, algal growth was divided into two processes, growth on ammonium and growth on 
nitrate. Both processes were defined as functions of temperature, pH and several limiting substrates 
presented later in this section. The relationship between algal growth and temperature was described 
according to the default process description of RWQM1 using the same parameter values. The 
relationship between algal growth and pH or limiting substrates were described by Monod functions.

Reichert et al. (2001) described the relationship between algal growth and inorganic nitrogen as, inter 
alia, a Monod function of ammonium and ammonia. This description was not incorporated into the new 
process description since plant uptake of nitrogen is considered to be targeted at either nitrate or 
ammonium, not ammonia (Campbell and Reece, 2008). The Monod functions relating algal growth to 
the availability of inorganic nitrogen were instead taken from Sah et al. (2011). The Monod function for 
algal growth on ammonium was defined as 

S NH4

K NH4 , ALG+S NH4
(90)

while the corresponding function for growth on nitrate was defined as 

S NO3

K NO3, ALG+S NO3

⋅
K NH4 , ALG

K NH4 , ALG+S NH4

. (91)

The parameter values KNH4,ALG and KNO3,ALG were both set to 0.01 g(N)·m-3 following Sah et al. (2011).

The Monod function relating algal growth to the availability of inorganic phosphorous was defined as 

S HPO4+S H2PO4

K PO4 , ALG+S HPO4+S H2PO4
(92)

following the default process description of RWQM1. The half saturation coefficient KPO4,ALG was set to 
0.01 g(P)·m-3 following Beran and Kargi (2005).

The Monod function relating algal growth to the availability of carbon dioxide was defined as 

SCO2

KCO2 , ALG+S CO2
(93)

following Decostere et al. (2013), Yang (2011), Banks et al. (2003), Mashauri and Kayombo (2002), 
Carberry and Greene (1992) and Buhr and Miller (1983). The half saturation coefficient KCO2,ALG was 
set to 0.055 g(C)·m-3 following Decostere et al. (2013). Their study was focused on carbon dioxide 
dynamics and their model was shown to function well.

The Monod function relating algal growth to pH was defined as 
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K pH , ALG

K pH , ALG+ y ( pH )
,

y ( pH ) = 10∣optpH ALG−pH ∣
−1

(94)

following Beran and Kargi (2005) and Mashauri and Kayombo (2002). The half saturation parameter 
KpH,ALG was set to 170 and the parameter optpHALG was set to 7.45, in both cases the mean of the 
parameter values used by Beran and Kargi (2005) and Mashauri and Kayombo (2002).

The maximum specific growth rate kgro,ALG was set to 2 d-1 following the default process description of 
RWQM1. This value can be compared to the corresponding parameter values used in the models 
presented in section 2.2, which varied between 0.48 d-1 and 2.55 d-1 (Table 1).

Considering the combined effect of temperature, pH and all limiting substrates the process describing 
algal growth on ammonium was defined as 

dX A

dt
= k gro , ALG⋅eβALG⋅(T −T 0)⋅

K pH

K pH + y ( pH )
⋅

⋅
S NH4

K N , ALG+S NH4

⋅
S HPO4+S H2PO4

K PO4 , ALG+S HPO4+S H2PO4

⋅
S CO2

K CO2+SCO2

⋅X ALG

(95)

while the corresponding process for algal growth on nitrate was defined as 

dX A

dt
= k gro , ALG⋅eβALG⋅(T −T 0)⋅

K pH

K pH + y ( pH )
⋅

⋅
S NO3

K N , ALG+S NO3

⋅
K N , ALG

K N , ALG+S NH4

⋅
S HPO4+S H2PO4

K PO4 , ALG+S HPO4+S H2PO4

⋅
SCO2

KCO2+S CO2

⋅X ALG .
(96)

It should be noticed that the models presented in section 2.2 vary a lot in terms of structure and 
parameter values. A major reason is the variation in application domain. This elucidates the importance 
of model verification. The model presented in equation (95) and equation (96) should therefore 
preferably be evaluated against observed data from the specific system that it is supposed to describe. It 
should also be investigated if a division between algal growth on bicarbonate and algal growth on 
carbon dioxide, as proposed by Decostere et al. (2013), would increase the model performance.

According to equation (95) and (96) phosphorous and nitrogen may simultaneously limit the growth 
process. However, plant growth is only limited by one substrate at any one time instant, a fact referred 
to as Liebig's Law of Minimum (Ågren and Andersson, 2009). Liebig's Law of Minimum was included 
in the models proposed by Beran and Kargi (2005) and Carberry and Greene (1992) as presented in 
section 2.2. However, according to Ågren and Andersson (2009) Liebig's Law of Minimum should only 
include nutrients, not light intensity as in the proposed models. Liebig's Law of Minimum was not 
included in equation (95) and (96) for consistency with the other process descriptions within the 
RWQM1 set-up. 

7.2 INCORPORATION OF ALGAE DYNAMICS INTO THE ACTIVATED SLUDGE MODEL 
BASED ON THE RIVER WATER QUALITY MODEL NO. 1

The processes describing algal growth as presented in equation (95) and (96) were incorporated into 
two different versions of the RWQM1 set-up. The first version was based on the default RWQM1 
parameter values as presented in Table 15 while the other version was based on the parameter set 
obtained in the second non-linear system identification presented in Table 20. Both versions included 
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the updated hydrolysis process described in section 6.1. It was investigated how the introduction of 
algae affected the system dynamics of an activated sludge process without aeration and without carbon 
dioxide injection, described by the first scenario of section 5.1. 

Both versions of the RWQM1 set-up were initially simulated without algae. It was found that the 
concentrations of autotrophic bacteria and consumers reached zero due to the low dissolved oxygen 
concentrations (Table 21). Introducing algae into the two model versions affected the system dynamics 
in terms of most state variables (Table 21). Two distinct changes were found in the increased dissolved 
oxygen concentration and the decreased carbon dioxide concentration. Both changes were expected as 
a result of algal photosynthesis. The carbon dioxide concentration was decreased from 20 g(C)·m-3 to 
12 g(C)·m-3 with default parameter values, or to 13 g(C)·m-3 with parameter values from the non-linear 
system identification. The new concentrations were still well above the water-atmosphere saturation 
value of 0.11 g(C)·m-3 and also above the carbon dioxide injection saturation value of 11.7 g(C)·m-3. 
The increase of dissolved oxygen enabled a stable population of consumers that in turn made the 
concentrations of heterotrophic bacteria and slowly biodegradable substrate decrease through predation 
and consumption. The concentration of autotrophic bacteria reached zero even though the oxygen 
concentration increased, most likely a consequence of the high predation rate. 

Table 21. Steady-state values of some state variables from simulations with and without algae

State variable Default 
parameter set 
- no algae

Updated 
parameter set 
- no algae

Default 
parameter set 
- with algae

Updated 
parameter set 
- with algae

Unit

Readily biodegradable 
substrate 

69 69 32 69 [g(COD)·m-3]

Slowly biodegradable 
substrate 

6300 6300 1000 1200 [g(COD)·m-3]

Inert organic matter 1600 1600 3000 3600 [g(COD)·m-3]

Dissolved oxygen 0.00013 0.00024 0.37 0.68 [g(O)·m-3]

Carbon dioxide 20 20 12 13 [g(C)·m-3]

Heterotrophic bacteria 890 890 44 37 [g(COD)·m-3] 

Autotrophic bacteria 0 0 0 0 [g(COD)·m-3]

Consumers 0 0 4000 2900 [g(COD)·m-3]

Algae 0 0 930 1100 [g(COD)·m-3]

All particulate matter a 8800 8800 9000 8800 [g(COD)·m-3] 

pH 7.0 7.0 7.2 7.2 [-]
a XH+XA+XALG+XCON+XS+XI, calculated from the rounded values presented in the table.
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8 OPERATION STRATEGY ANALYSIS

This chapter covers an evaluation of different operation strategies. It was investigated how a varying 
sludge age and different levels of sludge recirculation, aeration and carbon dioxide injection affected 
the system dynamics of an algae based activated sludge process described by the RWQM1 set-up. The 
evaluations were conducted on the RWQM1 set-up with updated hydrolysis as presented in section 6.1, 
parameter values from the second non-linear system identification presented in section 6.3 and algae as 
introduced in section 7.2.

Each variable was varied one at a time in order to investigate how it affected the system dynamics. A 
reference scenario was defined according to the model set-up presented in section 5.2. The oxygen KLa 
value was then varied between 0 and 219 d-1, the carbon dioxide ditto was varied between 0 and 214 d-1, 
the sludge age was varied between 6 and 14 days and the sludge recirculation was varied between 0.6 
and 1.4 times the inflow magnitude.

The evaluation revealed that the level of sludge recirculation affected the steady state values of all 
investigated state variables in the same way as the sludge age (Figure 15 and Figure 16). The major 
difference was that the sludge age affected the state variables of consumers and oxygen to a larger 
extent. Varying the KLa value for oxygen and carbon dioxide mainly affected the oxygen concentration 
and the carbon dioxide concentration, respectively. All other state variables were relatively unchanged 
(Figure 17 and Figure 18). The three state variables of readily biodegradable substrate, inorganic 
nitrogen and inorganic phosphorous were relatively unaffected by all parameter variations. The 
concentration of autotrophic bacteria was zero in all simulations, yielding an inorganic nitrogen 
concentration consisting of ammonium and ammonia alone. The total concentration of particular matter 
(XH+XA+XALG+XCON+XS+XI) increased with the sludge age and with the sludge recirculation rate 
(Figure 19).
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Figure 15. Steady state values of all investigated state variables at different levels of 
sludge recirculation. The sludge recirculation was defined as a fraction of the inflow 
magnitude. Inorganic nitrogen was the sum of ammonium, ammonia, nitrate and 
nitrite.
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Figure 16. Steady state values of all investigated state variables at different sludge 
ages. Inorganic nitrogen was the sum of ammonium, ammonia, nitrate and nitrite.

Figure 17. Steady state values of all investigated state variables at different levels of 
aeration. Inorganic nitrogen was the sum of ammonium, ammonia, nitrate and nitrite.
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Figure 18. Steady state values of all investigated state variables at different levels of 
carbon dioxide injection. Inorganic nitrogen was the sum of ammonium, ammonia, 
nitrate and nitrite.

Figure 19. Steady state values of the total concentration of particulate matter 
(XH+XA+XALG+XCON+XS+XI) as a function of sludge recirculation and sludge age. 



9 ALTERNATIVE SEDIMENTATION CONFIGURATION

The original sedimentation unit was modelled assuming ideal sedimentation, as stated in section 5.2. 
All particulate matter was hence assumed to settle, including zoo-plankton (consumers). This 
assumption does not agree with the theory presented by Moreno-Grau et al. (1996) who modelled zoo-
plankton as mobile. Their approach was considered interesting and reasonable. It was therefore 
investigated how different sedimentation rates of zoo-plankton affected the system dynamics of the 
RWQM1 set-up evaluated in chapter 8. Ideal sedimentation was assumed for all other particulate 
matter.

It was found that the sedimentation configuration affected the steady state values of all investigated 
state variables rather much (Table 22). A sedimentation rate of 80 % or less resulted in a consumer 
concentration so low that the autotrophic bacteria persisted predation. Sedimentation rates lower than 
100 % yielded unreasonably high oxygen concentrations. This was probably a consequence of high 
algae concentrations relative the concentrations of oxygen consuming bacteria and consumers. 

Table 22. Steady state values of simulations with different levels of zoo-plankton settling

State variable Unit 100 % 95 % 90 % 80 % 0 %

Slowly biodegradable substrate [g(COD)·m-3] 1200 1500 1800 230 78

Inert organic matter [g(COD)·m-3] 3600 3200 3600 5800 6800

Heterotrophic bacteria [g(COD)·m-3] 37 68 400 2300 3400

Autotrophic bacteria [g(COD)·m-3] 0 0 0 52 340

Consumers [g(COD)·m-3] 2900 1200 580 200 0

Algae [g(COD)·m-3] 1100 1400 2300 4900 6000

All particulate matter a [g(COD)·m-3] 8800 7400 8700 13000 17000

Readily biodegradable substrate [g(COD)·m-3] 69 69 62 2.3 0.72

Ammonium plus ammonia [g(N)·m-3] 30 25 24 0.74 0.098

Nitrate plus nitrite [g(N)·m-3] 0 0 0 17 18

Inorganic phosphorous [g(P)·m-3] 2.9 2.1 1.8 0.46 0.078

Dissolved oxygen [g(O)·m-3] 0.68 68 96 81 91

Carbon dioxide [g(C)·m-3] 13 0.27 0.076 0.031 0.022

pH [-] 7.2 8.7 9.2 9.3 9.4
a Calculated from the rounded values presented in the table.
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10 DISCUSSION

10.1 EFFLUENT QUALITY AND CONSUMERS

The results of the operation strategy analysis presented in chapter 8 indicate that the proposed model 
describes a system that fails in its purpose to enhance water quality. The effluent concentrations of 
inorganic nitrogen, inorganic phosphorous and readily biodegradable substrate were close to the 
influent concentrations of 31.56 g(N)·m-3, 3.2 g(P)·m-3 and 69.5 g(COD)·m-3, respectively, irrespective 
of operation strategy (Figure 15 through Figure 18). Lower effluent concentrations of both nutrients 
and readily biodegradable substrate were obtained with a lower sedimentation rate of consumers (zoo-
plankton), as presented in chapter 9. However, a lower sedimentation rate also yielded unreasonably 
high concentrations of dissolved oxygen, indicating an incorrect model description.

A relatively high consumer concentration varying between about 1 800 g(COD)·m-3 and 
4 000 g(COD)·m-3 was obtained in the operation strategy analysis presented in chapter 8. This 
concentration can be compared to the concentration of algae varying between about 625 g(COD)·m-3 
and 1 250 g(COD)·m-3. These concentrations and the ratio between them should be evaluated against 
measurement data. It seems likely that the concentration of consumers is unreasonably high.

The low quality of the calibration process discussed in section 10.4 undermines the results presented in 
chapter 8 and chapter 9. These results should therefore be regarded as examples of how the model may 
be used after further development rather than accurate system descriptions. 

10.2 MODEL STRUCTURE

The model structure of RWQM1 was considered suitable for the modelling of wastewater treatment. It 
was, just like ASM1, summarized in a Gujer matrix and the extensive usage of ASM1 indicates a wide 
acceptance of the Gujer matrix in wastewater treatment modelling. The processes of RWQM1 were, 
even though developed to describe a river system, considered suitable for the modelling of wastewater 
treatment. The processes coupled to hydrolysis and algal growth were adjusted within this study, and it 
is likely that some further adjustments are needed in order to make the model describe an algae based 
activated sludge process more accurately. It might for example be a good idea to include a decay 
process in which bacteria are transformed into slowly biodegradable substrate. However, the original 
structure was considered a very good starting point for future modelling.

10.3 LIGHT INTENSITY

The effect of light intensity on algal growth was neglected in this study. It was reasoned that the light 
intensity at the light source can be kept constant in large scale indoor applications. However, if the light 
intensity is allowed to vary the model must be adjusted to account for light intensity dependence since 
such variations affect algal growth rather much (Wu et al., 2013). Adjusting the model to account for 
light intensity dependence can be done through the introduction of a light intensity limiting factor as 
discussed in sub-section 2.2.1.

10.4 CALIBRATION

A central part of this study was to adjust the RWQM1 set-up presented in chapter 5 aiming for 
consistency with the ASM1 set-up presented in chapter 4. This was done through adjustments of the 
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hydrolysis process and the calibration of seven kinetic parameters through linear and non-linear system 
identification, as presented in chapter 6. The calibration process improved the model performance 
somewhat. However, it was considered insufficient and four shortcomings were identified as crucial. 

The first shortcoming was attributed to the small number of parameters included in the calibration 
process. RWQM1 includes 23 state variables and 30 processes which can be compared to the eight state 
variables and 13 processes included in ASM1. The number of model parameters of RWQM1 is hence 
relatively large: 13 stoichiometric parameters and 49 kinetic parameters linked to biological processes. 
Apart from those, it is necessary to define the elemental mass fractions of the nine organic state 
variables in order to enable calculation of the stoichiometric coefficients. The large model size and the 
consequent model complexity aggravates calibration. The seven kinetic parameters that were included 
in the calibration process were considered insufficient. A central obstacle is that the stoichiometric 
coefficients are calculated outside the main program, they were downloaded from Peter Reichert's 
homepage (Reichert, 2014). This makes it difficult to include stoichiometric parameters and elemental 
mass fractions in any system identification method. It was not possible to extend the linear system 
identification to include any additional parameters, as discussed in sub-section 6.2.1. However, the 
non-linear system identification may be extended with kinetic parameters, even those that are included 
in Monod functions. 

The second shortcoming was attributed to the small number of state variables included in the 
calibration process. Only nine out of 23 state variables were included in the second linear system 
identification and in the non-linear system identification. It was not possible to include any additional 
state variables due to the lack of measurement data. 

The third shortcoming was attributed to the calibration approach. All unknown parameters were 
estimated simultaneously through linear or non-linear system identification. This approach aggravates 
the usage of system knowledge that is crucial in the development of conceptual models. An alternative 
method would be to parametrize one parameter at a time based on laboratory experiments. Henze et al. 
(1987) provide information about how to determine both stoichiometric and kinetic parameters in this 
way. They specify which parameters that are unnecessary to calibrate due to low variation in parameter 
values between different reactors, and which parameters that are crucial to parametrize thoroughly. The 
elemental mass fractions should preferably be defined based on laboratory experiments on the sludge 
that will be used in the subject activated sludge plant. It is likely that the elemental mass fractions of 
organic state variables in a wastewater differ from those in a river system.

The fourth and last crucial shortcoming of the calibration process was attributed to the absence of 
algae. It must be emphasized that the developed model was supposed to describe an activated sludge 
basin in which algae was to constitute an important function. However, the calibration was conducted 
on a system without algae.

10.5 FURTHER RESEARCH

A more comprehensive study should be focused on the gas exchange processes presented in section 2.3. 
Literature values of KLa vary rather much (Table 2 and Table 3) depending on application domain. It is 
hence important to estimate the KLa values from studies on an activated sludge basin. The unreasonably 
high oxygen concentrations obtained in simulations presented in chapter 9 indicate that the gas 
exchange description of the proposed model is insufficient. This elucidates the need for KLa studies 
targeted on systems subject to extensive photosynthesis. The saturation value for carbon dioxide 
injection calculated in this study should also be reviewed. This value is dependent on several factors 
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such as the carbon dioxide concentration of the injection gas and the carbon dioxide concentration of 
the gas bubbles just before they reach the surface. Each unique carbon dioxide injection application is 
hence associated with a unique saturation value. 

The quality of the influent data should be improved through a study focused on the characteristics of 
raw sewage. The influent data used in this study was not well substantiated and this was due to the lack 
of documentation. Hence et al. (1987) provide information on how to determine the state variables 
included in ASM1. RWQM1 includes several state variables usually not included in wastewater 
treatment models. Raw sewage concentrations of those state variables are hence not well documented.

10.6 RELATED RESEARCH

This thesis was aimed at the modelling of an algae based activated sludge process. The proposed model 
should be regarded as a tool for future use in control and operation strategy analyses. Several 
alternative models have been proposed in literature. For example the one presented by Ifrim et al. 
(2014) and those presented in section 2.2. The relatively large number of models aimed at the 
modelling of algae based wastewater treatment composes a good base for future model development.

Algae cultivation may be used in fields of application other than that of wastewater treatment targeted 
at nutrient and COD removal. Research has for example been targeted at algae based food production 
(Becker, 2003), heavy metal removal (Doshi, Seth, Ray and Kothari, 2008) and biofuel production 
(Kong et al., 2010; Wang, 2013). The different fields of application may be combined in order to obtain 
cost effective solutions. An example is the combination of wastewater treatment and biofuel production 
discussed by Kong et al. (2010). Knowledge gained in one field of application may be utilized in the 
others and collaboration between the different fields will likely result in more sustainable solutions.
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11 CONCLUSIONS

The overall aim of this thesis was reached in that a model describing the dynamics of an algae based 
activated sludge process was proposed and evaluated. 

The calibration process conducted within this study consisted of a linear and a non-linear system 
identification. The non-linear system identification improved the model performance of the proposed 
model somewhat. However, the calibration process was considered insufficient. The major obstacle was 
the lack of comprehensive measurement data from a real algae based activated sludge process. Without 
such data and without the proper system understanding it was not possible to calibrate and evaluate the 
proposed model set-up satisfactory. 

It was shown that the modelled algae based activated sludge process failed in its purpose to reduce the 
concentration of nutrients and of readily biodegradable substrate. It was also shown that the removal of 
both nutrients and readily biodegradable substrate was enhanced by assuming that the consumers (zoo-
plankton) are mobile. Those results clearly indicate that a better system understanding is needed in 
order to describe the system accurately.

The model structure of RWQM1 was considered a suitable starting point for the modelling of an algae 
based activated sludge process. It includes all state variables needed to describe algae dynamics and pH 
dynamics. Also, the model structure allows a straightforward application to an activated sludge 
environment. 

Future work should be targeted at further model development and this work will require better data and 
a more comprehensive system understanding. 
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APPENDIX A – GUJER MATRIX SUMMARIZING THE ACTIVATED SLUDGE 
MODEL NO. 1 a

a Taken from Henze et al. (1987).
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APPENDIX B – GUJER MATRIX SUMMARIZING THE RIVER WATER 
QUALITY MODEL NO. 1 a

a Taken from Reichert et al. (2001).
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APPENDIX C – STOICHIOMETRIC COEFFICIENTS USED IN APPLICATIONS 
OF THE RIVER WATER QUALITY MODEL NO. 1 a

i \ j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 -1.85 -0.01 -0.01 -0.85 0.27 0.00 1.00

2 -1.85 -0.01 -0.01 -0.80 0.27 0.00 1.00

3 0.07 0.02 -0.77 0.25 0.00 -1.00 0.23

4 -2.22 1.07 -1.07 -0.01 0.39 0.00 1.00

5 -3.71 -1.63 0.00 0.86 -0.12 1.00

6 0.07 -0.27 0.02 0.25 -0.02 -1.00 0.23

7 -4.78 4.70 -0.02 -15.13 -0.32 0.68 1.00

8 0.07 0.02 -0.77 0.25 0.00 -1.00 0.23

9 -20.71 20.63 -0.02 -22.33 -0.32 -0.01 1.00

10 0.07 0.02 -0.77 0.25 0.00 -1.00 0.23

11 -0.06 -0.01 1.00 -0.39 0.00 1.00

12 -0.06 -0.01 1.29 -0.39 -0.01 1.00

13 0.06 0.01 -0.60 0.26 0.00 -1.00 0.40

14 0.03 0.00 0.20 0.00 0.00 -1.00 0.95 0.25

15 0.13 0.02 -0.15 0.32 -0.01 -5.00 1.00 3.85

16 0.13 0.02 -4.77 1.45 -0.01 1.00 -5.77

17 0.45 0.13 -3.80 1.18 -0.02 -8.65 1.00 3.85

18 0.45 0.13 -3.80 1.18 -0.02 -8.65 1.00 3.85

19 0.45 0.13 -3.80 1.18 -0.02 -8.65 1.00 3.85

20 0.06 0.01 -0.60 0.26 0.00 -1.00 0.40

21 0.03 0.00 0.20 0.00 0.00 -1.00 0.95 0.25

22 1.00 0.00 0.00 0.00 0.00 0.00 -1.00

23 -1.00 1.00 0.08

24 -1.00 1.00 0.08

25 1.00 1.00

26 -1.00 1.00 0.07

27 1.00 -1.00 0.03

28 0.30 1.00

29 -1.00 1.00

30 1.00 -1.00

a Downloaded from Peter Reichert's homepage (Reichert, 2014).
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APPENDIX D – PROCESS RATES OF THE RIVER WATER QUALITY MODEL 
NO. 1 a
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a Taken from Reichert et al. (2001).
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APPENDIX E – S-FUNCTION DESCRIBING THE DIFFERENTIAL 
EQUATIONS OF THE RIVER WATER QUALITY MODEL NO. 1

function rwqm1(block)
% Level-2 MATLAB file S-function describing RWQM1.
% Author: Rasmus Pierong
% Latest edited: 2014-01-07
 
    setup(block);
    
% end rwqm1
 
function setup(block)
 
    %% Register number of dialog parameters
    block.NumDialogPrms = 10; % XINIT, par_stoichiometry, par_kinetics, VOL, 
SO_SAT_inj, SCO2_SAT_inj, SO_SAT, SCO2_SAT, KLa_O2, KLa_CO2
    
    %% Register number of input and output ports
    block.NumInputPorts = 1;
    block.NumOutputPorts = 1;
    
    %% Setup functional port properties to dynamically
    %% inherited.
    block.SetPreCompInpPortInfoToDynamic;
    block.SetPreCompOutPortInfoToDynamic;
 
    block.InputPort(1).Dimensions        = 26; % influent quality [23 state 
variables Q KLa_O2 KLa_CO2]
    block.InputPort(1).DirectFeedthrough = true; % direct feedthrough of Q
  
    block.OutputPort(1).Dimensions       = 24; % effluent quality [23 state 
variables Q]
    
    %% Set block sample time to continuous
    block.SampleTimes = [0 0];
    
    %% Setup Dwork
    block.NumContStates = 23; % one per state variable
    
    %% Set the block simStateCompliance to default (i.e. same as a built-in block)
    block.SimStateCompliance = 'DefaultSimState';
    
    %% Register methods
    block.RegBlockMethod('InitializeConditions',    @InitConditions);  
    block.RegBlockMethod('Outputs',                 @Output);  
    block.RegBlockMethod('Derivatives',             @Derivative);  
    
% end setup
 
function InitConditions(block)
 
    %% Initialize Dwork
    block.ContStates.Data = block.DialogPrm(1).Data(1:23); % [S_S S_I S_NH4 S_NH3 
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S_NO2 S_NO3 S_HPO4 S_H2PO4 S_O2 S_CO2 S_HCO3 S_CO3 S_H S_OH S_Ca X_H X_N1 X_N2 
X_ALG X_CON X_S X_I X_P];
    
% end InitConditions
 
function Output(block)
 
    %% Define output parameters
    block.OutputPort(1).Data(1:23) = block.ContStates.Data; % the 23 state 
variables
    block.OutputPort(1).Data(24) = block.InputPort(1).Data(24); % outflow
    
% end Output
 
function Derivative(block)
 
    %% Define parameters
    % Tank volume
    V = block.DialogPrm(4).Data(1);
    
    % Aeration or gas injection
    KLa_O2_inj = block.InputPort(1).Data(25); 
    KLa_CO2_inj = block.InputPort(1).Data(26); 
    SO_SAT_inj = block.DialogPrm(5).Data; % this value should be equal to the 
water-atmosphere gas exchange saturation value 
    SCO2_SAT_inj = block.DialogPrm(6).Data; % this value should be higher than the 
water-atmosphere ditto since the CO2 concentration is higher in the injection gas 
than in the atmosphere 
    
    % Water-atmosphere gas exchange
    KLa_O2 = block.DialogPrm(9).Data; 
    KLa_CO2 = block.DialogPrm(10).Data;
    SO_SAT = block.DialogPrm(7).Data; 
    SCO2_SAT = block.DialogPrm(8).Data; 
 
    % Stoichiometric parameters following Reichert et al. (2001) - from
    % Excel sheet
    e = block.DialogPrm(2).Data;
    par_kinetics = block.DialogPrm(3).Data;
    
    % Kinetic parameters following Reichert et al. (2001)
    [K_eq_w K_eq_1 K_eq_2 K_eq_N K_eq_P K_eq_s0 ...
    T T_0 k_death_ALG k_death_CON k_gro_ALG k_gro_CON k_gro_H_aer k_gro_H_anox 
k_gro_N1 k_gro_N2 k_hyd ...
    k_resp_ALG k_resp_CON k_resp_H_aer k_resp_H_anox k_resp_N1 k_resp_N2 ...
    k_eq_1 k_eq_2 k_eq_w k_eq_N k_eq_P k_eq_s0 k_ads k_des ...
    K_HPO4_ALG K_HPO4_H_aer K_HPO4_H_anox K_HPO4_N1 K_HPO4_N2 K_N_ALG K_NH4_ALG 
K_N_H_aer ...
    K_NH4_N1 K_NO3_H_anox K_NO2_H_anox K_NO2_N2 K_O2_ALG K_O2_CON K_O2_H_aer 
K_O2_H_anox ...
    K_O2_N1 K_O2_N2 K_S_H_aer K_S_H_anox ...
    beta_ALG beta_CON beta_H beta_hyd beta_N1 beta_N2] = deal(par_kinetics{:});
     
    %% Influent quality
    Q = block.InputPort(1).Data(24);
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    S_Si = block.InputPort(1).Data(1);
    S_Ii = block.InputPort(1).Data(2);
    S_NH4i = block.InputPort(1).Data(3);
    S_NH3i = block.InputPort(1).Data(4);
    S_NO2i = block.InputPort(1).Data(5); 
    S_NO3i = block.InputPort(1).Data(6);
    S_HPO4i = block.InputPort(1).Data(7);
    S_H2PO4i = block.InputPort(1).Data(8);
    S_O2i = block.InputPort(1).Data(9);
    S_CO2i = block.InputPort(1).Data(10);
    S_HCO3i = block.InputPort(1).Data(11); 
    S_CO3i = block.InputPort(1).Data(12);
    S_Hi = block.InputPort(1).Data(13);
    S_OHi = block.InputPort(1).Data(14);
    S_Cai = block.InputPort(1).Data(15);
    X_Hi = block.InputPort(1).Data(16);
    X_N1i = block.InputPort(1).Data(17);
    X_N2i = block.InputPort(1).Data(18);
    X_ALGi = block.InputPort(1).Data(19);
    X_CONi = block.InputPort(1).Data(20);
    X_Si = block.InputPort(1).Data(21);
    X_Ii = block.InputPort(1).Data(22);
    X_Pi = block.InputPort(1).Data(23);
 
    inflow = [S_Si S_Ii S_NH4i S_NH3i S_NO2i S_NO3i S_HPO4i S_H2PO4i S_O2i S_CO2i 
S_HCO3i S_CO3i S_Hi S_OHi S_Cai X_Hi X_N1i X_N2i X_ALGi X_CONi X_Si X_Ii X_Pi]';
        
    %% Rename state variables (current values in the basin)
    S_S = block.ContStates.Data(1);
    S_I = block.ContStates.Data(2);
    S_NH4 = block.ContStates.Data(3);
    S_NH3 = block.ContStates.Data(4);
    S_NO2 = block.ContStates.Data(5);
    S_NO3 = block.ContStates.Data(6);
    S_HPO4 = block.ContStates.Data(7);
    S_H2PO4 = block.ContStates.Data(8);
    S_O2 = block.ContStates.Data(9);
    S_CO2 = block.ContStates.Data(10);
    S_HCO3  = block.ContStates.Data(11);
    S_CO3 = block.ContStates.Data(12);
    S_H = block.ContStates.Data(13);
    S_OH  = block.ContStates.Data(14);
    S_Ca = block.ContStates.Data(15);
    X_H  = block.ContStates.Data(16);
    X_N1  = block.ContStates.Data(17);
    X_N2  = block.ContStates.Data(18);
    X_ALG  = block.ContStates.Data(19);
    X_CON = block.ContStates.Data(20);
    X_S  = block.ContStates.Data(21);
    X_I  = block.ContStates.Data(22);
    X_P = block.ContStates.Data(23);
    
    statevar = [S_S S_I S_NH4 S_NH3 S_NO2 S_NO3 S_HPO4 S_H2PO4 S_O2 S_CO2 S_HCO3  
S_CO3 ...
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        S_H S_OH S_Ca X_H X_N1 X_N2 X_ALG X_CON X_S X_I X_P]';
    statevar_real = statevar; % this vector will keep negative values
 
    for i = 1:23
        if statevar(i) <= 0;
            statevar(i) = 0;
        end
    end
 
    %% Define processes (in total 30 processes according to the Reichert et al., 
2001)
    % (1a) aerobic growth of heterotrophs with NH4
    p1 = k_gro_H_aer * exp(beta_H*(T-T_0)) * (statevar(1)/(K_S_H_aer+statevar(1))) 
* (statevar(9)/(K_O2_H_aer+statevar(9))) * ...
        ((statevar(3)+statevar(4))/(K_N_H_aer+statevar(3)+statevar(4))) * 
((statevar(7)+statevar(8))/(K_HPO4_H_aer+statevar(7)+statevar(8))) * statevar(16); 
    % (1b) aerobic growth of heterotrophs with NO3
    p2 = k_gro_H_aer * exp(beta_H*(T-T_0)) * (statevar(1)/(K_S_H_aer+statevar(1))) 
* (statevar(9)/(K_O2_H_aer+statevar(9))) * ...
        (K_N_H_aer/(K_N_H_aer+statevar(3)+statevar(4))) * (statevar(6)/
(K_N_H_aer+statevar(6))) * ((statevar(7)+statevar(8))/
(K_HPO4_H_aer+statevar(7)+statevar(8))) * statevar(16); 
    % (2) aerobic endogenous respiration of heterotrophs
    p3 = k_resp_H_aer * exp(beta_H*(T-T_0)) * (statevar(9)/
(K_O2_H_aer+statevar(9))) * statevar(16); 
    % (3a) anoxic growth of heterotrophs with NO3
    p4 = k_gro_H_anox * exp(beta_H*(T-T_0)) * (statevar(1)/
(K_S_H_anox+statevar(1))) * (K_O2_H_anox/(K_O2_H_anox+statevar(9))) * ...
        (statevar(6)/(K_NO3_H_anox+statevar(6))) * ((statevar(7)+statevar(8))/
(K_HPO4_H_anox+statevar(7)+statevar(8))) * statevar(16); 
    % (3b) anoxic growth of heterotrophs with NO2
    p5 = k_gro_H_anox * exp(beta_H*(T-T_0)) * (statevar(1)/
(K_S_H_anox+statevar(1))) * (K_O2_H_anox/(K_O2_H_anox+statevar(9))) * (statevar(5)/
(K_NO2_H_anox+statevar(5))) * ...
        ((statevar(7)+statevar(8))/(K_HPO4_H_anox+statevar(7)+statevar(8))) * 
statevar(16); 
    % (4) anoxic endogenous respiration of heterotrophs              
    p6 = k_resp_H_anox * exp(beta_H*(T-T_0)) * (K_O2_H_anox/
(K_O2_H_anox+statevar(9))) * (statevar(6)/(K_NO3_H_anox+statevar(6))) * 
statevar(16); 
    % (5) growth of 1st stage nitrifiers
    p7 = k_gro_N1 * exp(beta_N1*(T-T_0)) * (statevar(9)/(K_O2_N1+statevar(9))) * 
((statevar(3)+statevar(4))/(K_NH4_N1+statevar(3)+statevar(4))) * ...
        ((statevar(7)+statevar(8))/(K_HPO4_N1+statevar(7)+statevar(8))) * 
statevar(17); 
    % (6) aerobic endogenous respiration of 1st stage nitrifiers
    p8 = k_resp_N1 * exp(beta_N1*(T-T_0)) * (statevar(9)/(K_O2_N1+statevar(9))) * 
statevar(17); 
    % (7) growth of 2nd stage nitrifiers
    p9 = k_gro_N2 * exp(beta_N2*(T-T_0)) * (statevar(9)/(K_O2_N2+statevar(9))) * 
(statevar(5)/(K_NO2_N2+statevar(5))) * ((statevar(7)+statevar(8))/
(K_HPO4_N2+statevar(7)+statevar(8))) * statevar(18); 
    % (8) aerobic endogenous respiration of 2nd stage nitrifiers
    p10 = k_resp_N2 * exp(beta_N2*(T-T_0)) * (statevar(9)/(K_O2_N2+statevar(9))) * 
statevar(18); 

75



    % (9a) growth of algae with NH4
    p11 = k_gro_ALG * exp(beta_ALG*(T-T_0)) * 
((statevar(3)+statevar(4)+statevar(6))/
(K_N_ALG+statevar(3)+statevar(4)+statevar(6))) * ...
        ((statevar(3)+statevar(4))/(K_N_ALG+statevar(3)+statevar(4))) * 
((statevar(7)+statevar(8))/(K_HPO4_ALG+statevar(7)+statevar(8))) * statevar(19); 
    % (9b) growth of algae with NO3
    p12 = k_gro_ALG * exp(beta_ALG*(T-T_0)) * 
((statevar(3)+statevar(4)+statevar(6))/
(K_N_ALG+statevar(3)+statevar(4)+statevar(6))) * ((K_NH4_ALG)/
(K_NH4_ALG+statevar(3)+statevar(4))) * ...
        ((statevar(7)+statevar(8))/(K_HPO4_ALG+statevar(7)+statevar(8))) * 
statevar(19); 
    % (10) aerobic endogenous respiration of algae
    p13 = k_resp_ALG * exp(beta_ALG*(T-T_0)) * (statevar(9)/(K_O2_ALG+statevar(9))) 
* statevar(19); 
    % (11) death of algae
    p14 = k_death_ALG * exp(beta_ALG*(T-T_0)) * statevar(19); 
    % (12a) growth of consumers on algae
    p15 = k_gro_CON * exp(beta_CON*(T-T_0)) * (statevar(9)/(K_O2_CON+statevar(9))) 
* statevar(19) * statevar(20); 
    % (12b) growth of consumers on substrate
    p16 = k_gro_CON * exp(beta_CON*(T-T_0)) * (statevar(9)/(K_O2_CON+statevar(9))) 
* statevar(21) * statevar(20); 
    % (12c) growth of consumers on heterotrophs
    p17 = k_gro_CON * exp(beta_CON*(T-T_0)) * (statevar(9)/(K_O2_CON+statevar(9))) 
* statevar(16) * statevar(20); 
    % (12d) growth of consumers on 1st stage nitrifiers
    p18 = k_gro_CON * exp(beta_CON*(T-T_0)) * (statevar(9)/(K_O2_CON+statevar(9))) 
* statevar(17) * statevar(20); 
    % (12e) growth of consumers on 2nd stage nitrifiers
    p19 = k_gro_CON * exp(beta_CON*(T-T_0)) * (statevar(9)/(K_O2_CON+statevar(9))) 
* statevar(18) * statevar(20);
    % (13) aerobic endogenous respiration of consumers
    p20 = k_resp_CON * exp(beta_CON*(T-T_0)) * (statevar(9)/(K_O2_CON+statevar(9))) 
* statevar(20); 
    % (14) death of consumers
    p21 = k_death_CON * exp(beta_CON*(T-T_0)) * statevar(20); 
    % (15) hydrolysis
    p22 = k_hyd * exp(beta_hyd*(T-T_0)) * statevar(21); 
    % (16) CO2 - HCO3 equilibrium
    p23 = k_eq_1 * (statevar(10)-statevar(13)*statevar(11)/K_eq_1); 
    % (17) HCO3 - CO3 equilibrium
    p24 = k_eq_2 * (statevar(11)-statevar(13)*statevar(12)/K_eq_2); 
    % (18) H - OH equilibrium
    p25 = k_eq_w * (1-statevar(13)*statevar(14)/K_eq_w); 
    % (19) NH4 - NH3 equilibrium
    p26 = k_eq_N * (statevar(3)-statevar(13)*statevar(4)/K_eq_N); 
    % (20) H2PO4 - HPO4 equilibrium
    p27 = k_eq_P * (statevar(8)-statevar(13)*statevar(7)/K_eq_P); 
    % (21) Ca - CO3 equilibrium
    p28 = k_eq_s0 * (1-statevar(15)*statevar(12)/K_eq_s0); 
    % (22) adsorption of phosphate **** not in use ****
    p29 = k_ads * statevar(7); 
    % (23) desorption of phosphate **** not in use ****
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    p30 = k_des * statevar(23); 
    
    p = [p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 ...
        p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30]';
    
    %% Internal changes of state variables (in total 23 variables according to 
Reichert et al., 2001)
    reac = e'*p; % reac_i = sum(e(i,j)*p_j)
    reac(9) = reac(9)+KLa_O2*(SO_SAT-statevar(9))+KLa_O2_inj*(SO_SAT_inj-
statevar(9)); % water-atmosphere gas exchange (second term) and aeration (last 
term)
    reac(10) = reac(10)+KLa_CO2*(SCO2_SAT-statevar(10))+KLa_CO2_inj*(SCO2_SAT_inj-
statevar(10)); % water-atmosphere gas exchange (second term) and CO2 injection 
(last term)
            
    %% Define derivatives of the state variables
    block.Derivatives.Data = (Q/V)*inflow-(Q/V)*statevar_real+reac; % change = 
inflow - outflow + internal change
    
% end Derivatives
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