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ABSTRACT  
Accuracy in Swedish unsegmented and segmented rating curves  

Mattias Sörengård 

River discharge estimation is the basic hydrological information for most hydrological 

applications in various socioeconomic planning. Increasing the accuracy of the traditional 

rating curve in relation to river discharge estimation would be very valuable to hydrological 

applications. Suggestions have been made that the traditional power function rating curve 

should be divided into several segments because this is often motivated by the physical 

characteristics of the river. Each curve is commonly constructed by regression and each 

requires 3 estimated parameters. However stage-discharge data is often scarce, and this 

scarcity could lead to overparametrization and deterioration of accuracy. 

By constructing many unsegmented and segmented rating curves accounting for 

measurement uncertainty, the models can be validated, it can be determined if segmented 

rating curves suffers from overparametrization. The results showed that two-segmented 

rating curves did not yield better fits to data, and nor did it generate larger errors than 

unsegmented rating curves in extrapolation. Segmentation only reduced errors in low flow 

interpolation, when there is a clear segmentation.  It could also be concluded that 

unsegmented rating curves were slightly more robust when extrapolating. The biggest impact 

on rating curve errors was shown not to be determined by segmentation, but rather much 

more dependent on the amount of discharge measurement uncertainty or choice of regression 

method. With a mean discharge uncertainty of ±5 %, the errors from in high flow was 60 % 

in interpolation and 35 % in extrapolation. For low flows, the interpolation errors were 

around 95 % end extrapolation error estimation was 250 %. Conclusions could also be made 

that the relative errors from rating curves increased with lower discharges. 

Other important regression factors, such as heteroscedasticity, sometimes showed to have 

substantial impact on rating curve regressions, generally reduced from 59 % occurrence in 

unsegmented rating curves to 14-15 % in segmented rating curves.  
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REFERAT 
Noggrannhet i svenska segmenterade och osegmenterade i avbördningskurvor 

Mattias Sörengård 

Uppskattning av vattenflöden i vattendrag är den grundläggande informationen för de flesta 

hydrologiska applikationer vid olika typer av socioekonomisk planering. Att förbättra 

noggrannheten i avbördningskurvor då vattenflödet uppskattas vid en mätstation skulle vara 

värdefullt för de flesta tillämpningar där vattenflöden används. Tidigare studier har föreslagit 

att avbördningskurvor borde delas upp i flera segment, eftersom vattendrag inte sällan har 

olika segment med olika fysikaliska karaktärer. Varje segment kräver dock att 2-3 

regressionsparametrar bestäms, men flödesmätningar vid olika vattennivåer är ofta få, och 

knappheten kan göra att en utökad modell blir överparametriserad och än mer osäker. 

 

Genom att konstruera många avbördningskurvor, segmenterade och osegmenterade, kan 

dessa valideras mot valideringsdata och var det möjligt se om segmenterade 

avbördningskurvor blev överparametriserade. Studien visade att segmenterade 

avbördningskurvor vid kalibrering, interpolation och extrapolation generellt inte gav bättre 

prediktion än osegmenterade avbördningskurvor. Vid låga flöden och tydligt motiverade 

segmenteringar gav segmenterade avbördningskurvor en bättre interpolation, men dock inte 

vid extrapolation, vilket är en indikation att segmenterade avbördningskurvor var något 

överparametriserade. Den största inverkan på att minska felen i avbördningskurvor var var 

att minska mätosäkerheten i flödesmätningarna. Med en genomsnittlig mätosäkerhet i 

flödesmätningarna på ±5 % kunde osäkerheten kvantifieras till kring 60 % för interpolerade 

osegmenterade avbördningskurvor vid höga flöden och kring 95 % vid låga flöden. Variansen 

var dock stor. Osäkerheten från modellvalideringen av extrapolation för osegmenterade 

avbördningskurvor vid höga flöden kvantifierades till kring 35 % vid höga flöden och kring 

250 % vid låga flöden. Resultaten visade att de relativa felen från avbördningskurvor blev 

större för ju lägre flödet blir. 

 

Heteroskedastitet, som kan generera osäkerheter i avbördningskurvor, visade sig vara 

vanligare (59 %) i osegmenterade avbördningskurvor jämfört med segmenterade (14-15 %). 

Även antalet flödesmätningar hade en betydelse för felen i avbördningskurvor. 

 

Nyckelord: Avbördningskurva, icke-linjär regression, flöde, flödesmätning, osäkerhet, 

validering, hydrologi, överparametrisering, vattenstånd 
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POPULÄRVETENSKAPLIG SAMMANFATTNING 
Att veta hur mycket vatten som flödar fram i Sveriges vattendrag är väldigt användbar 

information för vårt samhälle. Den används för att planera samhället med hänsyn till ovanligt 

stora regn, som kan orsaka farliga översvämning och stora materiella skador. Ibland kan det 

råda brist på vatten, och då strider blandade intressen över tillgången. Den begränsade 

mängden vatten är en förutsättning för viktiga ekonomiska- och samhällsfunktioner, så som 

dricksvatten, industrier, vattenkraft, odling, offentliga estetiska intressen och inte minst 

miljömässiga. För att samsas om, och ibland skydda sig mot, denna värdefulla resurs, ligger 

ofta politiska beslut bakom vattnets fördelning till olika aktörer. En grundläggande 

förutsättning för en korrekt resursfördelning, är att veta hur stor tillgången på vatten är. 

Ett naturligt sätt att få reda på hur stor vattenresurs en instans förfogar över, är att mäta hur 

mycket vatten som rinner i det berörda vattendraget. Men Sveriges vattendrag är så många, 

långa och föränderliga att detta skulle vara omöjligt. Därför har man byggt datoriserade 

modeller som med hjälp av regn, temperatur och kända markförhållanden räknar ut hur 

mycket vatten som borde flöda i alla Sveriges vattendrag. Dessa beräkningar måste 

naturligtvis stämma överens med verkligheten, och då gärna så nära som möjligt. För att 

kunna jämföra modell med verklighet, så mäter man kontinuerligt hur mycket vatten som 

flödar på noga utvalda platser, från norr till söder, från bäckar till älvar.  

Denna rapport handlar om själva mätningen av vattenflödet, som rent tekniskt är en 

utmaning. Att mäta vattenflödet så noggrant som möjligt kräver avancerad utrustning, och 

att en utbildad person är på plats vid mätningen. Det som behövs är kontinuerlig mätdata, 

d.v.s. mätningar varje minut eller timme. Lösningen på problemet är att man mäter 

vattendragets vattennivå. Den översätts sedan till vattenflöde enligt en matematisk formel, 

en avbördningskurva, som är unik för varje vattendrag och kan förändras över tid. Hur väl 

denna avbördningskurva fungerar avgör därför hur noggrann den kontinuerliga mätningen 

vattenflödet blir, och i realiteten hur noggrann och säker information samhällets 

vattenanvändare har på sina tillämningar. 

Tidigare studier bekräftar att avbördningskurvan genererar stora osäkerheter i 

uppskattningen av vattenflödet. En ny förbättrad modell av avbördningskurvan har 

föreslagits av en grupp forskare. Den föreslår att många vattendrag borde ha flera 

avbördningskurvor för olika vattennivåsegment, eftersom det bl. a. motsvarar vattendragets 

geometri bättre då den t.ex. förändras då vattendraget svämmas över. Problemet är att lite 

data finns att tillgå när man bygger dessa matematiska avbördningskurvor, vilket gör att den 

totala osäkerheten kan bli sämre, speciellt om man använder sig av avbördningskurvor 

utanför det inmätta området för väldigt stora respektive små flöden.  
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Det huvudsakliga syftet med den här rapporten är att undersöka om användningen av två 

segment i avbördningskurvor ger mer eller mindre osäkerhet inom det inmätta området, 

respektive utanför det inmätta området. Metoden i rapporten använder sig av svensk 

mätningar av flöde och vattennivå och bygger därefter upp avbördningskurvor som är 

antingen med ett segment eller med två segment. Den modell som passar bäst med 

kontrolldata, är den som ger minst osäkerhet och är då att föredra. 

Resultaten visar att den nya modellen med två segment tycks ge mindre osäkerhet, speciellt 

för låga flöden, då översättningsformeln används kring vattennivåer där flödet tidigare mätts 

av en hydrolog. Men om avbördningskurvan används kring vattennivåer där ingen har varit 

mätt flödet, t.ex. vid översvämning och låga flöden, då fungerar den gamla modellen med ett 

segment av avbördningskurvan. 

För att få en ungefärlig uppskattning av hur stora osäkerheterna i avbördningskurvorna så har 

osäkerheterna uppskattats till 60 % för höga flöden, med utförda flödesmätningar, och 95 % 

för låga flöden. Om inga flödesmätning har gjorts vid vattennivån av intresse, men man ändå 

vill använda avbördningskurvan, så ligger osäkerheterna på 35 % för höga flöden, och 250 

% för låga flöden. Detta är värdefull information för de som arbetar med vattenmängder i 

naturliga vattendrag. 
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GLOSSARY 
 

Calibration Setting model parameters so that the 

fit a data set, e.g. a regression so the 

model can be used 

Extrapolation Using a model outside the range of 

data that was used in calibration 

Heteroscedasticity  Variation of variance 

Interpolation Using a model inside the range of 

data that was used in calibration 

MRMSE Mean Root Mean Square Error 

Overparametrization Using too many model parameters in 

a model, that the model becomes 

more uncertain 

Projection Variable Method A Regression method 

Rating curve A curve that explains the relation 

between stage and discharge 

Regression Fitting a mathematical function to a 

data set 

RMSE Root Mean Square Error 

Segmented rating curve Rating curve constructed by two or 

more equations 

SMHI Swedish Metrological and 

Hydrological Institute  

Stage Relative water level 

Unsegmented rating curve Rating curve constructed by one 

equation 

Validation (model) Controlling the model with 

independent data 
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1 Introduction 
Water resource related problems are increasing as when the demand of water is growing but 

the water resources are unevenly distributed, both locally and globally (WMO, 2008). WMO 

(2008) advises fair allocation of resources and quality control should be in focus when 

executing water related management and economic investments. This will ensure a 

sustainable use of water and secure the living conditions for people and the environment.  

In order to get an objective opinion of the water supply when closing water agreements, either 

domestically or transboundary, it is crucial to reach consensus of the limited water 

availability and potential depletions (WMO, 2008). Monitoring and understanding 

hydrological conditions is the fundamental knowledge in order to assure that regulations are 

followed and agreements fulfilled. Water related problems can then objectively be assessed 

and properly prevented. Providing society with necessary and accurate information is 

therefore an important field under continuous development by scientists and engineers.  

This report will focus on the technical implication of accuracy and its importance when 

quantifying stream flow when acquiring data from gauging stations. A gauging station is a 

construction which is placed in a river or a stream where it records the discharge. Because of 

technical limitations, gauging stations usually only record the water level, which by 

hydrologist is referred to as stage, and later translated into discharge. The stage-discharge 

relationship is therefore a crucial step in discharge estimation.  By measuring the discharge 

at different stages a relationship is conventionally set up with a regression curve, called a 

rating curve.  

Development in precision and accuracy of rating curves are of great interest for hydrologist 

since errors will propagate in all further hydrologic data. One novel approach is to separate 

the commonly used power law rating in more than one segment, because it is believed rivers 

often have natural segmentation relationship in cross section geometry e.g. the transition into 

floodplain. However the effect of using segmented rating curves has not been thoroughly 

researched and authors requests more applied studies of rating curve segmentation, which 

what this report intends to do. 

One technical issue with this approach is that discharge data often is limited, and preforming 

regression on two separate curves instead of one can generate even more errors, often referred 

to as overfit. This report aims to compare calibration and extrapolation properties between 

two-segmented rating curves and unsegmented rating curves, primarily in the perspective of 

overfitting, based upon Swedish stage-discharge measurements. Furthermore the study aims 

to conclude if there is a difference on rating curve accuracy if segmentation is done on rating 

curves that shows a clear sign of segmentation.  
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There is an added benefit of the segmentation method comparison, as the error estimation on 

Swedish rating curves are of great value to the Swedish Meteorological and Hydrological 

Institute (SMHI) since no previous and comprehensive error estimations has been made on 

rating curves based errors on this data set. Because of this reason the estimated values as such 

are valuable and worth being highlighted. 

Another aspect that is believed to have an effect on rating curve regression is the variation of 

variance (heteroscedasticity) in discharge measurements. This report also aims to quantify 

the occurrence of heteroscedasticity in Swedish gauging stations, and to investigate how 

segmentation will effect this property compared to unsegmented rating curves. Finally the 

report aims to qualitatively rise awareness and suggest a solution to heteroscedasticity 

implications on the procedure of a weighted point of no flow. That is a common practice that 

is used at the Swedish Meteorological and Hydrological Institute (SMHI) when constructing 

rating curves. 

2 Background 
The world’s water demand has been estimated to have increased a 10-fold from 1900 to 2000 

and the demand is now accounting for half of the world’s freshwater (World Meteorological 

Organization (WMO), 2008). Even though the allocation of the water resources have changed 

over time, the largest proportion is still agricultural irrigation and food production with      

62.6 %, followed by industry with 24.7 % of the water usage and the third largest share with 

8.5 % is used for domestic purposes (Kjellén et al., 1997). The need for freshwater has been 

predicted to increase even further with population growth and development that will improve 

living standards for many (WMO, 2008). 

Reliable hydrological information is required in order to have the ability to assess the issues 

above (WMO, 2008). WMO, (2008) states that quantification and quality control of surface 

and ground water are the most essential information for understanding and assessing water 

problems. Stream flow gauging and weather station networks are the fundament for 

quantification, but also for physical, chemical and ecological water quality variables. 

Hydrological data collection, measurement quality control and open source data storage are 

important steps, which ultimately leads to valuable and available information for agriculture, 

power production, industries and environmental management. 

The information from discharge gauging stations can further be used in assessing countries 

water resources, planning and operating water projects, predicting environmental and socio-

economic impacts, achieving regulatory requirements, increase security from hydrological 

extremes and in detail allocating water recourses within and outside a country (WMO, 2008). 
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2.1 Importance of discharge data 
The water cycle naturally incorporates many uncontrollable processes and hence dangerous 

complications can arise. The most direct and hazardous are the hydrological extremes: floods 

and droughts. A floods is defined as brief rise of water level which recedes at a slower rate 

(SMHI, 2014a). Because of large precipitation or snow melt, a land that otherwise is not 

submerged with water is called flooded at times of peak flow. Flooding is a natural 

phenomenon that can be necessary for ecosystems as they replenish wetlands with water. It 

is common for human to live within floodplain areas because of rich soils, abundant water 

supply and other favorable economic conditions (Di Baldassarre et al., 2013). However there 

are consequences of living in floodplain areas such as an increased risk of destruction of both 

lives and property. After a flood event excess load water can linger for a long in the flooded 

areas causing water related diseases such as Malaria, Dengue fever and Bilharzia infections 

(Hendriks, 2010). With detailed knowledge of flood events effective warning systems can be 

constructed and also allow planners to build environments with consideration of risk of 

flooding (WMO, 2008). Constructions can be designed to handle peak flow occurring within 

a set probability and time interval, commonly referred to as design floods (Haan, 2002).  

Droughts are the opposite extreme of flooding and represents an unnatural low availability 

of water (WMO, 2008). Unavailable irrigation can lead to disastrous reduced food 

production, which can lead to severe malnutrition for the surrounding population. Low flows 

can also have a critical effect on water quality since the concentration of pollutants, such as 

waste water and harmful chemicals, gets higher when there is less dilution within a smaller 

waterbody. Waste water treatment plants and other industries can then not reach the limits of 

exceedance which can influence the drinking water quality and the ecosystems. Aquatic 

ecosystems are also sensitive to low flows as morphological obstructions can limit species 

migration (Hadwen and Cooperative Research Centre for Sustainable Tourism, 2005). 

Droughts can therefore be a bottle neck for aquatic biodiversity which is considered as a loss 

of cultural, esthetical, scientific and educational values. 

Many factors can alter the hydrologic regime. Deforestation, urbanization and draining 

wetlands can decrease the infiltration capacity of rain and increase the runoff and surface 

water (WMO, 2008). This can cause faster and higher peaks of discharge and which further 

can increase the risk of flooding and droughts. Climate change is predicted to have an impact 

of the frequency of hydrologic extremes and should be considered and accounted for in water 

management. 

Erosion and sediment transport are other issues to be considered. Erosion can degrade 

otherwise useful land areas and worsen the quality of soils (WMO, 2008). The subsequent 

sediment transport can have an impact on the physical and chemical water properties causing 

ecological changes. Eroded particles can settle in undesired places such as clogging 

diversions or accumulating in dams, the later increasing potential dam failure. Deforestation 
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and bare soils are strong factors to erosion risks, but also construction of infrastructures and 

settlements at sensitive locations. 

Direct water pollution from waste water plants and industries but also indirect leaching, are 

a potential threats to declining water quality (WMO, 2008). Thresholds from polluters must 

therefore be regulated and controlled. This also accounts for deposition of air born pollutants 

can be hazardous for water and transported long distances involving many countries. 

Morphological changes are yet another possible risk to a sustainable water usage. Dam 

building can change the rhythm of the hydrological regime, as the water storage will reduce 

the natural hydrologic variation that are important factors for both aquatic ecosystems and 

the population nurturing from the water downstream. 

2.2 Quantifying discharge 
Intensive discharge measurements are often rare, mainly because they rely on expensive 

equipment and rivers are mostly located far away from hydrological offices. Discharge 

measurements are even more rare because of: (1) high velocities (2) danger for staff and 

equipment (3) operational timing issues and (4) destruction of gauging station(Petersen-

Overleir and Reitan, 2005). A lengthy presentation of discharge measurements can be found 

in section 2.7. A gauging station is a construction which is placed in a river or a stream, where 

it records discharge by measuring the stage. The stage is the height of the water surface level 

relative to a local benchmark, Figure 1.  
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Figure 1. River and stream flow discharge recordings are based on information on discharge, Q, and stage, h, acquired at a 

gauging station (upper). Stage is continuously recorded at gauging station, often automatically within a stilling well (lower) 

but sometimes only with a manually recorded staff gauge (upper). The relationship can look differently at different parts of 

the cross section because of changes in geometry and friction, especially when entering a flood plain (upper right). Source 

(lower): (Enjebo (2014), reproduced with permission of the author). 

Since the gauging stations generally only records the stage and not the discharge, it is crucial 

to know what the discharge is at a certain stage, the stage-discharge relationship. At 

controlled passages of streams, the stage-discharge relationship can sometimes be known 

from mathematical derivations at dams or weirs with known geometry, such as various weir 

formulas e.g. V-notch stage-discharge relationship, Eq. (1) (Hendriks, 2010). 𝑄 is the 

discharge, 𝜑 is the angle of the V-notch weir, ℎ is the upstream water level above the V-

notch and C is a constant accounting for friction losses. 
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𝑄 = 𝐶 tan (
𝜑

2
)ℎ

5

2     (1) 

At most other gauging stations, stage-discharge relationship have to be prepared manually, 

primarily by constructing rating curves (WMO, 2008). Rating curves are constructed with 

regression models from discrete stage and discharge measurements, Figure 2. 

 

Figure 2. A rating curve constructed from stage and discharge measurements from a cross section at Solberg. The red stars 

are measurement data points and the black line is the rating curve.  

Sweden and many other countries have rigorous ongoing field campaigns of continuous 

measurements in order to construct and maintain rating curves ( WMO, 2008; SMHI, 2014b). 

When a rating curve has been constructed, it must be controlled and updated continuously 

because the river or stream section can change over time due of vegetation, constructions, 

debris, erosion and ice (Pappenberger et al., 2006). 

The are several ways to record the stage, and the most basic one is to use a staff gauge, a 

graded scale placed in the water, which can be recorded manually (Hendriks, 2010). 

Developed countries often have continuous measurements of the stage at their gauging 

stations (WMO, 2008; e.g. SMHI, 2014b). The stage should be measured where downstream 

water, such as waves and dams does not influences the discharge or the stage across an 

assigned measurement section (SMHI, 2014b). 

Well-functioning gauging stations often give most accurate discharge data available. That 

data is therefore used as a reference when calibrating models, e.g. HBV and S-HYPE used 

by SMHI to model stream flow and chemical transport for a ungauged streams and rivers 

(Strömqvist et al., 2012). The modeled estimated flows are considered to have a significantly 

lower accuracy than the gauging stations. Therefore, wise positioning of gauging stations is 

important in order to cost effectively cover a hydrologic network comprehensively (WMO, 

2008). WMO (2008) recommends the network to be evenly distributed and to include various 

climatic, topographic and geologic conditions in both small and large rivers and streams 

within the domain of interest.  
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2.3 Accuracy of rating curves 
The basis for production of hydrological data is primarily computed from rating curves; the 

estimated one-to-one relationship between discharge and stage. Precision and accuracy of 

rating curves are therefore crucial, since errors will propagate in all further hydrologic 

analysis based on discharge information (Di Baldassarre et al., 2012; Petersen-Overleir and 

Reitan, 2005). Errors effecting discharge information originating from rating curves are often 

ignored, but many studies show that they should not be neglected, e.g. Pelletier (1988) and 

Di Baldassarre and Montanari (2009). With today’s advancements in building computer 

based models to preform hydrological forecasting, the need for a better understanding of 

errors in hydrological data has been emphasized, in order to have a more correct model results 

that are used in decision making (Pappenberger et al., 2007). 

Extreme flows particularly generate big errors, since hydrological applications require 

extrapolation of the rating curve far beyond the measurement range (Pappenberger et al., 

2006). Despite the necessity of preforming such procedures, some authors recommend that 

extrapolation should not be done at all (Kuczera, 1996). In flood events, errors might generate 

practical uncertainties up to 30 % (Di Baldassarre and Montanari, 2009). Measurements in 

the high- and low-flow register are rare, e.g. only 12 % of gauging stations in France are 

calibrated for a 2-year flood,  and 65 gauged stations in Australia are extrapolated on average 

5.45 % of the time (Lang et al., 2010; Pena-Arancibia et al., 2015). The occurrence of 

extrapolation differs between countries depending on rating curve stability and measurement 

policies in gauging networks. 

Many countries use the standardized power equation, Eq. (2), in natural rivers when 

constructing rating curves (ISO 1100-2, 1998; Lambie, 1978). The function is 

mathematically originating from Manning’s formula, which is a physical explanation of open 

stream flow (Petersen-Overleir, 2009).  An iterative non-linear least squares regression is 

commonly used to solve the power function of the rating curve (e.g. Petersen-Overleir and 

Reitan, 2005; Goltsis Nilsson, 2014). The parameter 𝑐 is the stage of no flow while 𝑎 and 𝑏 

are constants. 

𝑄 = 𝑎(ℎ − 𝑐)𝑏  𝑎𝑗, 𝑏𝑗 ,  𝑐𝑗 > 0   (2) 

Eq. (2) is the standardized power function rating curve (ISO 1100-2, 1998). When using Eq. 

(2) as a rating curve some assumptions of idealized non-tidal steady conditions has to be 

made (Fenton, 2001; Petersen-Øverleir and Reitan, 2005): (1) obey the Q-h relationship, (2) 

negligible control changes of cross section, (3) no hysteresis effect and (4) randomly 

distributed errors. When extrapolating rating curves with the power equation, predictions are 

either overestimated or underestimated, which means that errors increase with higher 

discharges (Di Baldassarre et al., 2012; Reitan and Petersen-Overleir, 2009). 
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2.4 Segmented rating curves 
Novel approaches on rating curve construction have been developed in order to increase the 

accuracy of rating curves. One such approach is to separate the power law rating in more 

than one segment (Petersen-Overleir and Reitan, 2005; Reitan and Petersen-Overleir, 2009). 

More than two segments can sometimes be motivated as natural rivers can have sections 

where the Q-h relationship looks different, often due to changes in cross section geometry, 

Figure 1 (Petersen-Overleir and Reitan, 2005). A common and distinct change in the shape 

of the section is when the water is entering the flood plain (Herschy, 1999). It not only the 

geometry that changes, but also a possible change in friction due to e.g. vegetation (Lambie, 

1978; Herschy, 1999).  

The standardization document (ISO 1100-2, 1998) also acknowledges the extension of Eq. 

(2) to segmented rating curves where Eq. (3) is a two-segmented rating curve. More segments 

than two can be applied, but the scope of this study will restrict to one- and two-segmented 

rating curves, and will hereafter be referred to as unsegmented and segmented rating curves. 

The additional ℎ are the ranges in stage that the segmented curve applies for, ℎ𝑚𝑖𝑛 is the stage 

of no-flow,  ℎ0 is the intersection of the segments and ℎ𝑚𝑎𝑥 is the upper limit of the rating 

curve. 

𝑄 = {
𝑎1(ℎ − 𝑐1)

𝑏1                   ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ0
𝑎2(ℎ − 𝑐2)

𝑏2   ,               ℎ0 ≤ ℎ ≤ ℎ𝑚𝑎𝑥

,    𝑐1 ≤ ℎ𝑚𝑖𝑛,   𝑐2 = ℎ0,     𝑎𝑗, 𝑏𝑗, 𝑐𝑗 > 0 (3) 

Eq. (3) is a two-segmented power law rating curve, and it is a more flexible option than an 

approximation with a single power curve. Two problems with the segmented rating curve 

set-up are the sudden repositioning of control at ℎ0 and that there are not idealized hydraulic 

conditions enough to motivate the power function at all (Petersen-Øverleir and Reitan, 2005). 

Sweden is a country that is currently using the concept of segmented rating curves in their 

network of gauging stations, and has applied the method since 1979 (Sjödin, 2009). In the 

Swedish gauging network, 22 % of the rating curves are unsegmented, 69 % are two-

segmented and 9 % are three-segmented. SMHI is practicing the traditional way of 

constructing a segmented curve, which is to initially determine the number of segments and 

fit each segment separately (Goltsis Nilsson, 2014). The segment intersection ℎ0 is 

determined visually from a log-log-plot, Eq. (4), since each power curve function should be 

linear when transformed logarithmically, Figure 3 (Herschy, 1999). 

log(𝑄) = log(𝑎) + 𝑏 log(ℎ + 𝑐)   (4) 

Two segments are subsequently fitted to the two datasets within a limited segmentation 

interval, and then manually merged to get a continuous and as close to a smooth curve as 

possible. 
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Figure 3. A segmented rating curve at Nytorp constructed from Eq. (3) on the log-log scale where each section (green line) 

is modelled with Eq. (4). The measurement data points (blue) are naturally aligned in two lines rather than one which is an 

indication of a real segmentation. The segmentation is done with multiphase linear regression and the middle (+) indicates 

the point of segmentation ℎ0. 

Petersen-Overleir and Reitan (2005) developed a non-linear regression method with  the 

purpose of achieving an objective segmentation in order to minimize uncertainty in rating 

curves, hence avoiding the risk of errors in hydrology generated by human methodology as 

highlighted by Jónsson et al. (2002). Because of the challenges with multimodality in the 

likelihood surface when using non-linear regression method (Petersen-Overleir and Reitan, 

2005), Petersen-Overleir and Reitan instead turned to a Bayesian approach, thereby also 

allowing the determination of the optimal number of segments (Reitan and Petersen-Overleir, 

2009). 

Regardless of what method that is used for constructing segmented rating curves, it 

nevertheless increase the number of parameters with three, for each additional segment, e.g. 

Eq. (3). Applying more parameters to a model that already uses sparse data amounts, puts 

the rating curve at risk of being over-parameterized and then subsequently overfitted. 

Overfitting occurs when a model starts to fit both the intended observations as well as the 

noise (Hawkins, 2004). In the case of rating curves, the noise is mainly the measurement 

uncertainty. Overfitting can generate even more uncertainty, especially when extrapolating 

rating curves (Di Baldassarre et al., 2012).  Typically, an increased number of parameters 

leads to reduced model errors for the data used for calibration, but it can also deteriorate the 

predicting accuracy for other similar data (Jakeman and Hornberger, 1993; Beven, 1993). 

On the other hand, having too few model parameters can generate a prediction bias by not 

explaining the process enough. Setting the right number of model parameters can be 

regarded as a tradeoff function of bias and variance where the minimum represents the right 

number of parameters (Faber and Rajko, 2007). The general principle of the number of 



 

10 

 

model parameters is to not violate parsimony, which basically means the least number of 

necessary predictors should be used to explain the relationship (Hawkins, 2004). 

Another advantage of few parameters is increased portability and practical use. Establishing 

a rating curve is very valuable for all fields in hydrology and should therefore be manageable 

by many. In the case of segmented rating curves, advanced numerical based computations or 

exclusive software are necessary (Petersen-Overleir and Reitan, 2005; Reitan and Petersen-

Overleir, 2009) which might be a disadvantage.  

The conventional procedure for model selection and simultaneously minimizing overfitting, 

supported by available data, is by using Aikakes Information Criterion (AIC) (Akaike, 

1974) or Bayesian Information Criterion (BIC) (Schwartz, 1979). However, to significantly 

determining the existence of overfitting is generally done by model validation (Faber and 

Rajko, 2007), where the most common are statistical and residual validation analysis 

(Doherty and Hunt, 2009).  

2.5 Evaluating goodness of fit 
This practice is often done by comparing simulated values with observed values. 

Comparisons are often quantified in various ways by using the difference between simulated 

values with observed values e.g. residuals are the absolute differences between an estimated 

value and the data, Eq. (5). One commonly used estimate is the Root Mean Square Error 

(RMSE) Eq. (6). 𝐸 is the residual error, �̂� is the modelled discharge and 𝑄𝑣𝑎𝑙 is the measured 

discharge, the validation data. 𝑛 is the number of validation measurements. 

𝐸 = �̂� − 𝑄𝑣𝑎𝑙     (5) 

𝑅𝑀𝑆𝐸 = √
∑ (�̂� −𝑄𝑣𝑎𝑙)
𝑛
𝑡=1

2

𝑛
   (6) 

There are two different ways to validate a model, either externally by comparing model 

results with independent external data or internally where validation samples are taken from 

the same observations as used for model calibration. The latter approach is more resource 

effective if the data is scarce and needed for model calibration. Because of data dependent 

properties further approaches of extensive methods such as cross-validation, leverage 

correction, bootstrapping or Mallow’s Cp are needed (Faber and Rajko, 2007). Although 

external validation is somewhat data wasteful, it is used in this study because it is a closer 

assessment of RMSE prediction and easier to apply. 

The external validation idea is to divide the available data into one training set for calibrating 

the model, and into a validation set. How much of the available data that should be training 

data and validation data respectively has been debated. One suggestion to determine the 

required number of validation points is proposed to be dependent on the precision of the 
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measurement errors (Faber and Rajko, 2007). However, this varies greatly between applied 

external validation studies and therefore the widely used 30 %, discretely rounded upwards, 

will be assessed (recommended by Carlsson, (2014)). This ensures having enough validation 

data. 

An important tool in avoiding overfitting is restricting the range or distribution of the 

parameters by prior information of realistic values of the parameter (Tikhonov, 1977).  A 

study was done with the estimation of 𝑏 (Eq. (2)-(4)), as the parameter mostly should be 

between 1.5-3.5, while 𝑏 >4 should be carefully used since an estimation error in the 

exponent can generate a very large over or under prediction in a flood event (Gawne and 

Simonovic, 1994). Lack of data or large measurement errors could alter the 𝑏 parameter to 

be out of range, but it could also indicate that another number of rating curve segments is 

motivated. An analysis of the range of 𝑏 can be used for evaluating bad rating curve 

performance (e.g. Petersen-Overleir and Reitan, 2005) 

2.6 Heteroscedasticity 
Another aspect of uncertainty in rating curves is heteroscedasticity, which refers to the 

heterogeneity in variance of residual errors. Routinely it is assumed that discharge 

measurement errors are normally distributed with the same variance along the rating curve 

(Petersen-Overleir and Reitan, 2005; Di Baldassarre et al., 2012). This has shown not to be 

the case as 29 out of 65 stream flow stations in southeast Australia shows signs of 

heteroscedasticity (Pena-Arancibia et al., 2015). The ISO 1100-2 (1998) standard of rating 

curves suggests non-linear least squares as the regression method to solve Eq. (1), but that 

method is particularly bad in accounting for heteroscedasticity (Petersen-Overleir, 2004). 

Generally it is well known by statisticians that heteroscedasticity can affect aspects in curve 

fitting and regressions. Solving Eq. (2) with non-linear least squares assumes that the 

uncertainty in discharge measurements are linearly proportional to the discharge, which has 

been shown by Petersen-Overleir, (2004) to generally be incorrect. The same article suggests 

that another rating curve model parameter can be added in order to account for the 

heteroscedasticity. 

Heterogeneity in discharge measurements uncertainty has been shown to increase the risk of 

introducing large uncertainties in the extrapolation of rating curves (Westerberg et al., 2011). 

One substantial problem when solving the power function, Eq. (2), is that it is commonly 

done with non-linear regression, an optimization of a curve between residuals. As the 

residuals in rating curves naturally is much larger for high flow, different weight is put on 

the different measurements. It is suggested in the literature that there is a need to increase the 

knowledge of heteroscedasticity in rating curves in different regions of the world (Pena-

Arancibia et al., 2015; Petersen-Overleir, 2004).  
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2.7 Current practice of setting stage curves at SMHI 
SMHI has a long history of measuring flow in Swedish streams and rivers, with records 

available from the early 20th century (SMHI, 2014b).  

In Sweden most gauging stations use float recorders inside of a stilling well, Figure 1.  The 

water is let into the well by intake pipes, thereby measuring the water level with reduced 

oscillations and turbulence due to the stream flow and wind conditions (Hendriks, 2010). 

Hendriks (2010) further explains how the float with its counterweight is connected to a shaft 

encoder and how the data is stored with an automatic logger or on a paper chart that is 

manually changed and registered. Another common method to measure the stage is to mount 

one pressure sensor at the bottom of the stream and one at the surface. Accounting for the 

water density, the pressure difference of the total head (air and water) and the air pressure is 

the stage of the stream. Digital recordings can transmit the stage in real time through GSM 

or GPRS to faster predict discharges and hazards. 

The gauging network is distributed throughout Sweden and consists of 230 stations 

continuously recording the stage. Regular measurement of the discharge is done 

approximately every second year in order to confirm or update the rating curve (Lennermark, 

2015). All active Swedish stations are included in this study and the data comes from the 

measurements of stage and discharge that are currently used for constructing rating curves. 

Stage is manually recorded from reading the gauging staff compared to three on-land 

benchmarks while discharge has been measured with different methods depending on 

situation and what year it was done (Lennermark, 2015). 

At SMHI the accuracy in stage measurement should not be greater than ±3 mm accordingly 

to ISO 1100-2 (1998) but the practical threshold is ±10 mm (Sjödin, 2009). McMillan et al., 

(2012) suggests that uncertainty is typically less than ±10 mm but local water oscillations 

and clogging of stilling wells can add another ±20 mm uncertainty (Vandermade, 1982; 

Dottori et al., 2009). 

2.7.1 Discharge measurements with mechanical current meters 

Mechanical current meters were predominantly used until the middle of the 1990s and those 

measurements are actively being used in today’s rating curves and hence included this study 

(SMHI, 2014b; Goltsis Nilsson, 2014). They consists of a propeller and the measurement is 

done by counting the number of revolutions which is related to water velocity (Hendriks, 

2010). A current meter measures velocity in a single point in the stream, and in order to have 

a good estimate of the total velocity profile in a stream many measurements must be done at 

various depths and along the whole cross section (Hendriks, 2010). The discharge is 

estimated by interpolating and extrapolating the velocity profile on a cross section area which 

is called the area-velocity method.  A comprehensive literature review on uncertainty flow 

measurement with mechanical current meters indicates a discharge measurement uncertainty 

of 4-17 % (Pelletier, 1988; McMillan et al., 2012). 
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2.7.2 Discharge measurements with ADCP 

The mechanical current meters have mostly been replaced with various Acoustic Doppler 

Current Profilers (ADCP) by SMHI during the last 20 years (SMHI, 2014b). ADCP uses 

sound waves and the Doppler effect to determine velocity trough changes in wave frequency 

as the sound reflects in the water (Hendriks, 2010). Velocity profiles can either be measured 

with an ADCP from a boat or with a hand-held device called Acoustic Doppler Velocimeter 

(ADV) or FlowTracker (Lennermark, 2015). The Flow Tracker is used with the same 

methodology as a current meter and a study by McIntyre and Marshall (2008) shows that 93 

% of the samples with a FlowTracker is within 20 % deviation from mechanical current 

meters. 

Uncertainties in boat-held ADCP are often calculated from several measured transects and 

the difference from each transect is the relative error. Studies have shown errors of 3-5 % or 

5-7 % when comparing several transects (Mueller, 2003). The measurement routine at SMHI 

ensures that no data points used for a rating curve measured with ADCP has a larger deviation 

than 10 %; mostly between the range 3-7 % (Lennermark, 2015). In order to decrease the 

variation of uncertainty in the routine, all field hydrologist follow the same homogenized 

measurement procedures (Lennermark and Nyman, 2014). The main effort when measuring 

discharge is according to Lennermark and Nyman (2014) to find a proper non-curvy section 

with a smooth floor and laminar flow conditions. Lennermark (2015) means that the section 

should not be influenced by backwater effects. At least four transects should be measured 

and if the relative difference is larger than 5 % another four transects are made. If there is a 

varying water level during the measurement, several transects should be made for each water 

level. The moving bed test is made to ensure that the acoustic signals does not get affected 

by transportation of sediments in the riverbed. Adjustments are also made to adapt to the 

level of particles in the water, because too clear water can prevent effective backscattering 

and the signal does not reach the bottom floor. The ADCP is unable to reach all the way to 

the shore, so the river is extrapolated to the riverbank. Guidelines at SMHI recommends that 

only 5 %, maximum 10 %, of the total discharge should be extrapolated. Low velocities and 

representable conditions are preferred in shoreline extrapolation areas. Change in density and 

viscosity due to water temperature effects are double checked and the equipment is adjusted 

to the magnetic north compared to the real north. Other considered sources of uncertainty is 

the extrapolation of discharge above the ADCP-sensor, magnitude of velocity gradient and 

the velocity profile resolution. 

The technology of ADCP is advancing rapidly on performance, accuracy and methodology 

meaning that all discharge measurements available for rating curve construction with ADCP 

are not sure to be entirely equivalent (Lennermark, 2015). 

2.7.3 Discharge measurements with salt injection 

A third, but less practiced method in Sweden, is salt injection (SMHI, 2014b; Hendriks, 

2010). It can be applied in smaller and turbulent streams with the assumption of well mixed 
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conditions.  A known volume and concentration of saltwater is mixed upstream and recorded 

with two conductivity meters. Time differences in the conductivity peak can be related to the 

stream velocity (Hendriks, 2010). Studies show uncertainties of 2.3 %-7.1 % in salt dilution 

discharge measurement in small turbulent streams (Hamilton and Moore, 2012). 

2.7.4 Rating curve construction practice 

At SMHI the measurements are stored in a database (WISKI) and from that rating curves are 

constructed, either with a weir equation e.g. Eq. (1) or most commonly with the power 

function, Eq. (2) (G. Nilsson, 2014). New measurements are subjectively compared to 

previous measurements and to the current rating curve in order to control if any anomalies 

such as backwater influences or changes in the section are visible. If several measurements 

from different measurement occasions indicates a new rating curve relationship, the rating 

curve will be updated with the new measurements included and older measurements are 

removed if needed. By visual log-log inspection on Figure 3, it is determined whether the 

rating curve needs more on segmentation Eq. (3) or more Eq. (3). 

3 Method 
The design of the method aims to show how the accuracy in rating curves is effected by the 

choice of segmentation, both in calibration, interpolation and extrapolation. In order to get 

an accurate understanding, the measurement uncertainties were accounted for. Many factors 

can effect non-linear least squares rating curve regression with Eq. (2) and Eq. (3). One such 

important factor that will be reviewed is heteroscedasticity. Also the generation on specific 

procedures at SMHI will be evaluated. The results aims to give a comprehensive and valuable 

picture of the uncertainty in Swedish rating curves. 

3.1 Set-up 
Unsegmented and segmented rating curves were constructed by using stage and discharge 

measurements from SMHI’s gauging network. In six separate experiments, the upper 

segment, lower segment and unsegmented rating curves constructed with two different 

methods were evaluated in calibration, interpolation and extrapolation. Since the non-linear 

approach of solving the segmented segmentation curve was found unreliable (Petersen-

Overleir and Reitan, 2005) the regression of each segmented section was preformed 

separately as unsegmented rating curves. This ignores the smoothness requirements but suits 

well for exploring extrapolation properties.  

The method used non-backwater influenced stage and discharge measurements from SMHI. 

The measurements from each station were then divided into an upper segment and a lower 

segment. The segmentation was done by identifying the intersection, ℎ0, from the optimal fit 

of two linear regressions on the logarithmic scale, Figure 3. The procedure is the same 

approach as the one used by SMHI, but instead of a visual estimation a multiphase linear 
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regression method was used (Hudson, 1966; Ganse, 2015). A difference in slope of the two 

sections on the logarithmic scale indicates of a segmentation in the stream. 

Solving for unsegmented rating curves with non-linear regression from Eq. (2) can be 

numerically challenging, as non-linear regression solutions depend on iterative algorithms 

which can both be unstable or diverge to no or a wrong solution (Chapra, 2008). The choice 

of numerical solving methods could have affectedthe construction of rating curves, but since 

the objective of this study primarily is to evaluate segmentation and not numerical solving 

methods, only two numerical method were used. 

3.1.1 Projection Variable Method 
In order to increase the convergence of the regression, the Projection Variable Method was 

used to solve separable non-linear least squares problems such as Eq. (2) (Petersen-Overleir 

and Reitan, 2005). The linear parameters, in this case 𝑎, can be expressed as a function, 𝑔,  

of the non-linear parameters 𝑏 and 𝑐, Eq. (7) (Golub and Pereyra, 2003). This reduces the 

number of parameters and increases convergence towards a global minimum, given proper 

initial guesses and boundaries of the non-linear parameters, Eq. (8). Parameter boundaries 

given in the iterative algorithms were 𝑎 >0, 𝑏 [1 5] and 𝑐 >0. Due to unrealistic convergence 

of 𝑏 to 𝑏 =0, 𝑏 =1±0.001 and 𝑏 =5±0.001 corresponding rating curves were removed. 

𝑎 = 𝑔(𝑏, 𝑐)     (7) 

𝑄 = 𝑔(𝑏, 𝑐)(ℎ − 𝑐)𝑏   𝑎𝑗, 𝑏𝑗 ,  𝑐𝑗 > 0   (8) 

3.1.2 Log Method 
The Log Method is an intuitive and easy to use method. It uses the linear properties of log-

log-transformed h-Q as in Figure 3. The intersection on the y-axis of a linear regression 

determined 𝑐, or the stage of no flow. An additional linear regression (Eq. (4)), was further 

used to determine 𝑎 and 𝑏 

  
Figure 4. Extrapolation of segmented (blue lines) and unsegmented (black lines) rating curves in high flow (left) and low 

flow (right) register. The fit of rating curves are evaluated with validation measurement data (red stars) by MRMSE in the 

extrapolation register, Eq. (9). The rating curves was modeled with the Projection Variable Method, Eq. (8).  
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3.1.3 Error evaluation  
Three forms of error evaluation was made: calibration, interpolations and extrapolation. 

From each gauging station one third (rounded upwards) of all available measurement data in 

the segmented rating curve was used as validation data. The rest of the data was used to 

construct the rating curve, Eq. (2). In interpolation, for upper and lower segments 

respectively, one third of the data was randomly extracted and used for validation data. For 

calibration, the same data as in interpolation was not extracted, but used for error 

measurements. For extrapolation, the most upper and lower third of the data was used as 

validation data. 

All rivers and streams have a different range of discharge, and therefore the absolute flow 

errors was normalized by dividing with the mean flow of the validation measurements in 

order to be comparable. The evaluation was made by regression analysis, by calculating the 

discharge-normalized Root Mean Square Error (MRMSE), Eq. (9), an extension of RMSE, 

Eq. (6).  

𝑀𝑅𝑀𝑆𝐸 = √
∑ (�̂� −𝑄𝑣𝑎𝑙)
𝑛
𝑡=1

2

𝑛∗𝑄𝑣𝑎𝑙
2    (9) 

The procedure allowed an estimation of the mean relative error for each rating curve, which 

can be viewed as average relative uncertainty in the range of validation data.  

The combined evaluation from all gauging stations was visualized through boxplots. 

Boxplots are visual description of numerical data by quartiles (Alm and Britton, 2008). Top 

and bottom of a boxplot is the 1st and 3rd quartiles, meaning that 50 % of the numerical data 

is within the box. A band in the middle of the box represents the median. The vertical lines 

from the boxes are called whiskers and contains 1.5 of the interquartile range, which is the 

3rd quartile subtracted with the 1st quartile. 

Additional experiments were done by visually analyzing errors in relation to a set of factors 

(below), which possibly could have an impact on the accuracy of the rating curves. This was 

done in order to more deeply understand the behavior of extrapolation errors originating from 

either segmented or unsegmented rating curves, such as when there should be a segmentation 

or not. 

The factors evaluated were: 

 Total number of measurements used for constructing the rating curves. More measurements should 

decrease the impact of each measurement uncertainty and hence stabilize the rating curve. 

 Difference in slope on the log-log scale between the upper and lower segment from Eq. (4). A large 

difference should indicate a more pronounced change in the section motivating a real segmentation. 

 Slope ratio with the same argument as above but it is a better estimate because slope differences can 

neglect small slopes, Eq. (10). 
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𝑆𝑙𝑜𝑝𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑙𝑜𝑤𝑒𝑟 𝑠𝑙𝑜𝑝𝑒

𝑢𝑝𝑝𝑒𝑟 𝑠𝑙𝑜𝑝𝑒
    (10) 

 Magnitude of slopes 

 Number of validation points 

3.2 Monte Carlo simulation 
Many scientists within the field of hydrology have moved away from a deterministic 

approach of handling measurements and instead regard them with a probabilistic perspective. 

A discharge measurement should not be viewed as a rigid data point but as a manifestation 

of a distribution. Petersen-Øverleir (2004) suggests that a measurement is normal distributed, 

with a mean and a variance that depends on the measurement error, 𝜀. Stage errors, 𝜀ℎ, are 

commonly expressed in cm, Eq. (11) while discharge errors, 𝜀𝑄, are often expressed in 

percentage, Eq. (12). The magnitude of errors in the resampled data reflects realistic errors 

mentioned in the literature, section 2.7.2-2.7.4. The stage was simulated with 3 cm (the 

largest stage error mentioned) and the discharge with 1, 5 and 10 %. 

The measurement uncertainties were assumed to be normal distributed with a 95 % 

confidence interval, therefore simulation with a certain error has half the original variance. 

The simulation equations are different, because errors in the stage is expressed in cm, while 

in the discharge it is expressed in percentage; Eq. (11) and Eq. (12), 𝜇 being the mean and 𝜎 

the variance. 

ℎ = ℎ + 𝜀ℎ  𝜀ℎ~𝒩(𝜇, 𝜎)   (11) 

𝑄 = 𝑄 + 𝑄 𝜀𝑄 𝜀𝑄~𝒩(0, 𝜎)   (12) 

All rating curves was reconstructed 100 times with the original data resampled with induced 

errors from Eq. (11) and Eq. (12). The results was evaluated and validated, previous section. 

This way of resampling is called a Monte Carlo simulation and is a common method that 

accounts for the uncertainty in measurements. 

By taking into account the uncertainty, one can evaluate how the measurement uncertainty, 

both in discharge and stage, propagates into extrapolation errors and the fit during calibration. 

By stepwise increasing the measurement uncertainty in Eq. (11) and Eq. (12), it was possible 

to estimate the uncertainty in rating curves and also to determine whether if segmented rating 

curves are overfitted or not. 

If overfitting occurs, the extrapolation errors will grow faster for the segmented curve 

compared to the unsegmented rating curve, because an over-parametrized model starts fitting 

the noise rather than the real system, and is more likely to worsen the extrapolation properties 

(Faber and Rajko, 2007). A too simple model can instead generate bias by not explaining the 

reality thoroughly enough. Faber and Rajko (2007) argues that the number of parameters is 

a tradeoff between bias and overparametrization. 
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An important aspect of rating curve segmentation practice is to explore whether there is any 

difference of using unsegmented and segmented rating curves when there is a clear sign of 

segmentation. A sign of segmentation was quantified as slope ratios (defined in Eq. (10)) 

when applying multiphase regression on logarithmic data. Simulations was therefore done 

by extracting data with a clear sign of segmentation. The clear indication of segmentation 

value, the slope ratio was set to <0.20, this because the slope ratio factor simulations in this 

study showed an even distribution of errors between 0 and 1, and that SMHI suggests 59 % 

of its rating curves should be segmented. This means that at least one third of the rating 

curves with the smallest slope ratio >0 ought to be segmented. 

3.3 Heteroscedasticity 
Heteroscedasticity residual analysis was performed visually on both segmented and 

unsegmented rating curves. Visual analysis was done by classifying the residuals in the same 

way as in Peña-Arancibia et al. (2015); where type A has a trumpet shape residuals indicating 

heteroscedasticity (also Fig. 1 in Petersen-Overleir, (2004)), type B has a non- to slight 

trumpet shape and type C means that it cannot be determined, Figure 5. Rating curves with 

six or less data points were excluded because the evaluation of heteroscedasticity were then 

visually difficult and would always be classed as C.   

 

 

 

 

 

 

 

  

Figure 5. Residual discharge errors (y-axis) along 

stage, ℎ, (x-axis) showing none or slight evidence of 

heteroscedasticity (A) at Männikkö, strong evidence of 

heteroscedasticity (B) at Vrångebäcken and (C) shows 

inconclusive sign of heteroscedasticity at Övre 

Abiskojokk. 
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At SMHI there were residual records of the relative uncertainty for each measurement in the 

rating curve. 

𝐸 =
�̂�−𝑄 

𝑄
    (13) 

There was a notable difference between the residuals from SMHI and the residuals from the 

generated curves with the Projection Variable Method. When heteroscedasticity occurs in 

rating curves, the variance was the largest at high flows, Figure 5(b), because residual are 

absolute errors and therefore residuals are larger for higher discharge values (Di Baldassarre 

et al., 2012). Large low flow residuals indicate a larger low flow measurement uncertainty, 

which is well known at SMHI (Lennermark, 2015). 

The hypothesis of what is causing this difference was believed to arise from a weighted no-

flow procedure that is used at SMHI. Sometimes it is possible to measure the cease to flow 

value in the field (Lennermark, 2015). This means it is known where the rating curve should 

intersect with the y-axis (stage), which is normally estimated from a regression. A forcing 

point, a 100-times weighted artificial measurement point, is then placed at the measured 

intersection. This could have a statistical impact on the regression, especially close to the 

forcing point. A bias is therefore induced into the rating curve and could have impacts on the 

accuracy on the whole curve. An investigation of phenomena and its effect on the residuals 

was done by adding a modelled forcing point with the similar weight of 100 measurements. 

Here a suggestion is made of how to avoid the statistical interference of a forcing point, but 

still being able to set a cease to flow point. In Eq. (2), the parameter 𝑐 is designed to be used 

as the point of no flow (only for unsegmented or lower segment rating curve) and that 

parameter was set to be the measured no flow point. Determining 𝑐 beforehand is also 

beneficial in a numerical perspective since estimating 𝑎 and 𝑏 becomes much easier with a 

linear regression. This method also avoids complicated iterative non-linear regressions as 

conventional linear regressions can be performed with Eq. (4) with the benefit of easier 

handling. 

The weighted no flow point practice was compared qualitatively by modelling rating curves 

0.7 meters below estimated intercepts on previously constructed curves, both with the 

weighted forcing point and suggested method of pre-setting parameter 𝑐. Although 

construction of rating curves with the power law becomes a lot simpler, it can be misleading 

to determine a no-flow point at all, as this point can vary greatly with time and should 

therefore only to be used if the no-flow elevation is certain, such as at a fall or a weir. 
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3 Results 

4.1 Calibration, interpolation and extrapolation 

The most obvious result from analyzing the errors of rating curves, it is possible to observe 

how the biggest impact on the magnitude of errors is the uncertainty of discharge 

magnitude, Figure 6. Secondly, the error estimation is larger in for low flow compared, 

especially for low flow in extrapolation, Figure 6. Generally the Projection Variable 

Method constructs rating curves with less errors than the Log Method, with the exception to 

unsegmented rating curves in low flow, Figure 6 (bottom right). Generally segmented 

rating curves preforms with slightly less errors, compared to the unsegmented counterparts. 

This seems to not hold true for all high flows with the Projection Variable Method, or the 

low flow extrapolation with the Log Method. No obvious signs of overparametrization can 

be observed in the results, this can be observed by that the segmented rating curves were 

observed not to preform worse at high uncertainties, compared to unsegmented rating 

curves. 

 

Figure 6. The median of the distributions (the distribution is in blue boxplots) of calibration, interpolation and extrapolation 

MRMSE in high and low flow, when constructing segmented (black) and unsegmented (red) rating curves with varying 

measurement uncertainty. The methods used were the Projection Variable Method Eq. (8) (denoted PVM and marked in 

gray) and linear regression on log-log-transformed h-Q data (denoted LOG METHOD). Y-axis shows the MRMSE, which 

indicates the amount of errors in the rating curves, and can be interpreted as percentual error.  In order to thoroughly account 

for the impact of the measurement uncertainty a resampling was done 100 times with Eq. (11) and (12), a normal distribution 

with a stage measurement uncertainty of 3cm (denoted h + - 3cm) and a discharge measurement uncertainty of 1, 5 and 10 

% (Q + - 1 %, Q + - 5 % and Q + - 10 %). No resampling without uncertainty is denoted with raw data.  
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Comparing the two different regression models, it is possible to observe that the Projection 

Variable Method generally generated less errors for high flow compared to the LOG Method, 

Figure 7. The Log Method generated less errors in the low flow, with exception of segmented 

rating curves in extrapolation.  

 

 

 
                      

 

 

 

 

 

Figure 7. The error (MRMSE) difference between the Projection Variable Method and the LOG Method for calibration, 

interpolation and extrapolation for high and low flow (𝑃𝑉𝑀 –  𝐿𝑂𝐺 𝑀𝑒𝑡ℎ𝑜𝑑). The procedure is done for both unsegmented 

(red) and segmented rating curves (black), meaning that negative values on y-axis indicates that 𝑃𝑉𝑀 generates less error 

than the LOG Method. 

4.2 Slope ratio 
 

A small slope ratio, defined in Eq. (10), of h-Q data on the log-log-scale, Figure 3, indicates 

of clear visual segmentation and therefore motivated to use segmented rating curves. When 

the same analysis as in previous section was applied on rating curves with slope ratios <0.2, 

it is possible to observe that the impact was small in the high flow, Figure 8. Although rating 

curves with slope ratios <0.2 generates more errors compared to the general result (Figure 

7), segmentation generated less errors in calibration and for interpolation with small errors. 

However, when the errors increase in low flow interpolation and extrapolation the 

unsegmented rating curves generated less errors instead, Figure 8.   

 

          

                  
 

Figure 8. The median of the distributions (the distribution is in blue boxplots) of calibration, interpolation and extrapolation 

MRMSE in high and low flow, when constructing segmented (black) and unsegmented (red) rating curves with varying 

measurement uncertainty and slope ratios <0.2. The error (MRMSE) difference between rating curves with a slope ratios 

<0.2 (a visually clear sign of segmentation) and the total set of rating curves. 
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4.3 Error distributions 
No visual differences in the distribution of errors was found when comparing segmentation 

procedures. Parameters such as: number of measurements, slope difference, slope magnitude, 

slope ratio and number of validation points visually had the same effect on both sementation 

methods. However, the number of measurements had a noteworthy effect on the distribution 

of both rating curve methods, Figure 9. More measurements did not generate the smallest 

error, but seemingly less outliers and smaller variance. 

 

Figure 9. The distribution of the extrapolation MRMSE in high flow register depending on the number of measurements 

available when constructing segmented (green) and unsegmented (blue) rating curves with Eq. (8). A large RMSE indicates 

of large errors when predicting discharges outside of the measurement range of high flows.  In order to clearer visualize the 

impact of the large number of parameters a resampling was done 5 times with Eq. (11) and (12) with a stage measurement 

uncertainty of 1cm and a discharge measurement uncertainty of 5 %. If the MRMSE is multiplied with 100, it can be 

interpreted as percent. 

The slope ratio distribution showed that most of the slope ratios are in the range between 0 

and 1, Figure 10. This means that the segmentation is mostly done so that the first segment 

has a smaller exponential increase of discharge with stage, such as in Figure 3. This scenario 

can be compared with the stream entering a flatter surface, e.g. a flood plain. When the slope 

ratio is larger than 1 it means that there is an exponential decrease in the upper segment, 

which can be interpreted as a contraction or a sudden increase of friction in the cross section. 

A negative value means that one of the slopes has a negative stage discharge relation. There 

could possibly be a trend of larger slope ratio up from 0 to 1 where a smaller slope ratio 

would give a smaller error.  
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Figure 10. The distribution of the extrapolation MRMSE in high flow register depending on the slope ratio, Eq. (10), when 

constructing segmented (green) and unsegmented (blue) rating curves with Eq. (8). A large RMSE indicates of large errors 

when predicting discharges outside of the measurement range of high flows.  In order to clearer visualize the impact of the 

large number of parameters a resampling was done 5 times with Eq. (11) and (12) with a stage measurement uncertainty of 

1cm and a discharge measurement uncertainty error of 5 %. If the MRMSE is multiplied with 100, it can be interpreted as 

percent. 

4.4 Parameter distribution 
The model parameter control can be an important tool for evaluating the validity of a model, 

which in the case of power law rating curves can be done on exponent 𝑏 in Eq. (2).  The 

variance within the boxes of the boxplots contains the critical parameter range between 1 and 

4 for low flow and high flow. This hold true for both the segmentation and the unsegmented 

rating curves and for calibration and extrapolation simulations. Segmented rating curves 

consistently have a smaller exponent than unsegmented rating curves and that the exponent 

increases with uncertainty, Figure 11. That feature is largest when extrapolating. The 

distributions are often skewed to a smaller parameter value. 

 

Figure 11. Distribution of the exponent parameter 𝑏 in 

Eq. (2), (3) and (8) when modeling unsegmented and 

segmented rating curves in high flow register with Eq. 

(8). 𝑏 >4 is considered large and b<1 unrealistic.. 

Trunkated at 𝑏 =6.  
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4.5 Visual heteroscedasticity 
Evaluation of SMHI relative error residual plots shows visual evidence of heteroscedasticity 

on measurement uncertainty. The occurrence of heteroscedasticity is estimated to be 57 % at 

SMHI, Figure 11. Heteroscedasticity occurring due to discharge residual differences 

occurred in 59 % of the unsegmented rating curves constructed with the Projection Variable 

Method. By using segmented rating curves, the occurrence of heteroscedasticity shrinks to 

around 15 %, while the occurrence of ‘none or slight evidence’ of heteroscedasticity 

increases, Figure 12. 

 
Figure 12. The impact of visual classification of procetual occurcance of heteroscedasticity according to Figure 5. A is none 

or slight evidence of heteroscedasticity, B is strong evidence of heteroscedasticity and C shows inconclusive sign of 

heteroscedasticity. Those denoted Measurement errors are evaluated from measurement error plots relative to discharge, a 

heteroscedasticity arising from absolute uncertainties have larger relative uncertainties. Unsegment, upper segment and 

lower segment corresponds to the heteroscedasticity occurring after the non-linear regression by unsegmented and 

segmented rating curves been modeled with Eq. (8). 

A representative example of consequences when using forcing points can be observed in the 

unsegmented rating curves at Brusafors gauging station, Figure 13.  When simulating a 

fictional no-flow forcing point, Figure 13, the five subsequent low flow discharge 

measurements are underestimated in the regression. However when applying the pre-set no 

flow parameter 𝑐 in Eq. (4), then it reduces to two underestimated discharge measurements 

with a smaller residual magnitude. It is worth noting that both procedures of changing in the 

low flow, affect how the rating curve looks in the high flow. 

0

20

40

60

80

100

measurement error unsegmented upper segment lower segment

P
ro

p
o

rt
io

n
 [

%
]

VISUAL HETEROSCADACIDITY

A % B% C%



 

25 

 

 
Figure 13. 3 rating curve constructed with three different methods by data from Brusafors (blue stars) with a “known” no-

flow point at a stage of 8.7m. Q/ h stand for discharge and stage measurment. The dashed curve (blue) is modelled with Eq. 

(8). The double dashed curve (red) is also modelled with Eq. (8) from Brusaforsdata but also with a weighted no-flow point 

at 8.7 (red circle) forcing the rating curve down to the no flow poind. The whole line (black) rating curve is modelled with 

originl Brusafors data (blue stars) with Eq. (12) and 𝑐 is pre-set to the no-flow point 8.7. 

Another no-flow consequence sample could clearly be visualized in a residual plot at. 

Snapparp gauging station, Figure 14. The forcing point is changed the configuration of 

residuals by both increasing the residual variance, especially in the lower section of the rating 

curve. Not only did it increase the uncertainty, but it also generated a bias which was not 

there before. 

 
Figure 14. An example of reating curve residuals in Snapparp visualizing the impact when using the wighted point of no-

flow (red circles) in in contrast to the pre set parameter 𝑐 and modelled with Eq. (12) (blue stars).  

Forcing Point 
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5 Discussion 
There were big differences of errors within the rating relationships, when the measurement 

uncertainties were included in rating curve accuracy, Figure 6. Unsegmented rating curve 

median error in calibration error of high flow was estimated to around 4 %, but when 

including an average discharge uncertainty of ±5 % the median error from the rating curves 

were estimated to be close to 60 %, Figure 6.  If the same measurement uncertainty was 

considered when extrapolating the error, it was smaller with errors of 36 %. The latter is a 

result with the same magnitude as previous studies of flooding uncertainties of 30 % (Di 

Baldassarre and Montanari, 2009). It is a surprising result, that extrapolation in high flow 

shows less errors than interpolation. The reason for this is probably that extrapolation is 

measured in at a higher discharge, and the larger the discharge, the smaller the relative errors 

becomes. 

When considering low flow, the accuracy became even lower. In unsegmented calibrated low 

flow the median error was 41 %, Figure 7, but regarding the 5 % measurement uncertainty 

the median estimated error was 95% in interpolation and 250 % when extrapolating, Figure 

9. These are considerably large errors, and therefore crucial that both hydrologist 

constructing rating curves and professionals using hydrological products (hydrographs and 

models) are well aware of this. Especially since a rating curve with a great fit, but 

unaccounted measurement uncertainty, can give an impression of low errors in the 

regression, when in reality it is not possible to know if the curve has been fitted to the true 

discharges.  

5.1 Unsegmented or segmented rating curves 
The suggested solution of reducing errors by segmenting the power law rating curve (Eq. (2)) 

into two parts (Petersen-Overleir and Reitan, 2005, Reitan and Petersen-Overleir, 2009), was 

evaluated on over 200 rating curves in Sweden. Each segment was modeled and evaluated 

separately, both with the Projection Variable Method and the Log Method. Determination of 

the point of segmentation was done with multiphase linear regression when the data are log-

log-transformed. This approach makes the study of segmentation possible, but it ignores the 

requirement that the segments should be merged into a smooth curve. This requirement could 

possibly have an impact on the curves error properties, but was neglected. 

The results showed that the Projection Variable Method generally constructs rating curves 

with the least amount of errors, for both segmented and unsegmented rating curves, Figure 

7. The indication was strongest for high flow, and the Projection Variable Method preforms 

equally with the Log Method for low flows. The exception was that the Log Method 

generates the smallest errors in extrapolation for low flow unsegmented rating curves.  

When it comes to the performance of segmentation with the Projection Variable Method, 

little difference could be observed in either calibration, interpolation or extrapolation, 

especially when comparing with the impact of discharge measurement uncertainty, Figure 6. 
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Looking at the small differences, segmented rating curves in the low flow seemed to be 

beneficial with the Projection Variable Method. For the Log Method, segmented rating 

curves showed clearly, that it performed with less errors compared to unsegmented.  

When simulating cross sections at gauging stations that have a clear sign of natural 

segmentation (slope ratio <0.2), rating curves were generally generating more errors than if 

they did not have a small slope ratio, Figure 8. In this case, segmentation had little impact on 

high flow, but had a notable impact on low flow. This were clearest at calibration and 

interpolation at small discharge uncertainties. In extrapolation and high discharge 

uncertenties (<Q ±5), unsegmented rating curves preformed with less error. This could be a 

sign of overparametrization and overfit, because the effect of overparametrization would 

increase the errors faster for segmented rating curves when increasing the measurement 

uncertainty. No sign of overparametrization could be observed in the results including all 

rating curves, Figure 6, but slightly for rating curves with slope ratios <0.2, and the 

conclusion is that segmented rating curves slightly suffer from overfit compared to 

unsegmented rating curves. 

The second conclusion is that segmentation has a minor impact on errors segmented rating 

curves, and the biggest impact are primarily discharge measurement uncertainty followed by 

choice of regression method. The biggest, and maybe only, benefit with segmentation was 

for low flow interpolation with low discharge uncertainties. On the other hand, segmentation 

does not seem to generate more errors. It can be argued that the difference between the two 

segmentation methods are too small to make the extra and complicated work of constructing 

segmentations in rating curves. 

Another factor that reduced the uncertainty, was found in the study to be the number of 

measurements at a gauging station, Figure 9. In more than 17 measurements, large error 

outliers seemed to be reduced, which means that the curve becomes more stable. In more 

than 30 measurements the error variance was reduced clearly, possibly due to the small 

sample size. The number of measurement that can be made is a budget question and this 

report can work as a foundation arguing for a more extensive budget for field hydrologists. 

Within the simulation of the rating curves some unrealistic parameter estimations have 

occurred. An example when the 𝑏 exponent in Eq. (2) sometimes happens to become <1 and 

sometimes even <0, Figure 11. If 𝑏 is <1 it would suggest that the river was hyperbolic rather 

than parabolic, which is unlikely. When parameter 𝑏<0 it means that the stage-discharge 

relationship is reversed, with less discharge at larger stages, which is physically impossible. 

Beacaus of the large sample size and multiple simulations, this should not have caused too 

many problems for median values. 
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5.2 Heteroscedasticity 
The effect of heteroscedasticity when preforming regression is problematic, as different 

weights are put on different measurement. Petersen-Overleir (2004) extension of the power 

function accounting for heteroscedasticity would be an interesting resumption in the future. 

This because of signs of heteroscedasticity occurred on as many as 59 % of the unsegmented 

rating curves, Figure 12, which can be compared to the occurrence of 45 % in a study in 

Australia (Pena-Arancibia et al., 2015).  Heteroscedasticity was more uncommon in 

segmented rating curves with an occurrence of 14 % for upper segments and 15 % for lower 

segments. The lower occurrence of heteroscedasticity in the lower segment could be one 

explanation why segmented rating curves for low flow generates much less errors than the 

unsegmented. 

Another source of heteroscedasticity is originating from the measurement uncertainty. The 

relative measurement uncertainty was as expected to be larger in low flow discharge 

measurement and the discharge data showed signs of heteroscedasticity in 57 % of the rating 

curves. The increased variance of low flow could be a counter weight to the high flow 

heteroscedasticity, or it could be needed to handle this variance separately. 

What was peculiar in the SMHI rating curve discharge residual documents was the 

reoccurring one sided residual heteroscedasticity. In a well-functioning regression the data 

should be distributed equally on both sides of the regression curve. But sometimes in the low 

flow in SMHI residual plots of Eq. (13) the discharge data was often clustered above the 

rating curve. The hypothesis was that forcing points with the weight of 100 data points and 

no variance was added at a known point of no flow. This study shows that such procedure 

adds heteroscedasticity to the regression and heavily influences all parts of the regression 

curve, even in the high flow register, Figure 13. The residuals looked quite different adding 

heteroscedasticity with the forcing point, Figure 14. The suggested solution to add a point of 

no flow instead of adding a forcing point was to put the point of no flow directly in the 𝑐 

parameter which is the hydrological interpretation of that parameter. Although it is not 

recommended to directly estimate 𝑐 unless the river floor is stable, such as with a concrete 

or stone floor, there are advantages. There is a reduced risk of overparametrization and simple 

linear regression can be applied when solving Eq. (2) by Eq. (4). The results showed that the 

method can reduce the problem of underestimation when adding a point of no flow. On the 

other hand, that method can generate a large change in the high flow register which this study 

did not evaluate. 
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6 Conclusions 

 Errors from rating curves were large when accounting for measurement uncertainties, 

compared to the fit of the rating curve. 

 

 With a mean discharge uncertainty of ±5 %, the errors from in high flow were around 

60 % in interpolation and 36 % in extrapolation. For low flows, the interpolation 

errors were around 95 % end extrapolation error estimation is 250 %. 

 

 Rating curve relative errors reduced with increased discharge 

 

 Discharge measurement uncertainty had the largest impact on errors generated from 

rating curves.  

 

 Stage measurement uncertainty was almost negligible. 

 

 Choice of regression method had a considerable impact on rating curve performance. 

 

 Segmentation of rating curves had little or no positive impact on rating curve 

performance in calibration, interpolation and extrapolation in high flow. 

 

 Segmentation of rating curves had a slightly more positive impact on rating curve 

performance in calibration and interpolation, especially with a clear segmentation in 

a log-log-distribution or a small slope ratio. 

 

 Segmentation of rating curves did not generate more errors. 

 

 Segmented rating curves showed slight signs of overparametrization. 

 

 Rating curves with a clear segmentation (small slope ratio) generated on average 

more errors, regardless segmentation method or regression method and should 

preferably not be chosen as a cross section. 

 

 Heteroscedasticity occurred in 59 % of the unsegmented rating curves, while only 14-

15 % in the segmented rating curves. 

 

 The weighted point of no flow procedure at SMHI was shown to have, sometimes 

drastically, heteroscedasticity implications. 
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