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Abstract
Error detection in wastewater treatment plants using mass balances

Maja Karlsson

Process data from wastewater treatment plants are often corrupted by errors. These data
provide a basis for operating the plant, therefore effort should be made to improve the data
quality. Currently, Stockholm Vatten och Avfall uses a method where they quantitatively
verify water flow measurement data by comparing it to water level measurements. In this
thesis, an alternative approach based on mass balancing to detect errors was evaluated. The
aim was to find, implement and evaluate a mass balance based method to detect and locate
errors. The objective was to use this method to corroborate the flow verification method
used by Stockholm Vatten och Avfall, and to improve flow data from Bromma Wastewater
treatment plant. The chosen method consisted of two major steps, gross error detection
and data reconciliation. A case study was performed where the method was tested on both
simulated data with known added errors, real process data and finally a case where the
suggested method was compared to the flow verification method. The results showed that
this method was efficient in detecting a gross error when only one flow measurement was
erroneous and that the estimation of the error magnitude was good. However, the sug-
gested method was not useful for corroboration of the flow verification method. With the
flow verification method, the flow in one filter basin at the time was examined. The sug-
gested method required the combined flow in all 24 filter basins, which made it difficult to
compare the two methods. The method has potential to be valuable for error detection in
wastewater treatment plants, and to be used as a live tool to detect gross errors.

Key words: mass balance, wastewater treatment plant, error detection, data reconciliation,
gross errors, random errors, bias
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Referat
Feldetektion med hjälp av massbalanser i avloppsreningsverk

Maja Karlsson

Processdata från avloppsreningsverk innehåller ofta fel. Dessa data utgör basen för att driva
reningsverket, därför bör resurser läggas på att kontrollera och förbättra datakvaliteten. I
dagsläget använder Stockholm Vatten och Avfall en metod som kontrollerar vattenflöden
genom att jämföra flödesmätningar med vattennivåmätningar. I det här examensarbetet
testades en alternativ metod baserad på massbalansering för att detektera och lokalisera
fel. Syftet var att hitta, implementera och utvärdera en massbalansbaserad feldetektion-
smetod. Målet var att använda denna metod för att utvärdera flödesverifieringsmetoden
som Stockholm Vatten och Avfall använder, samt att förbättra flödesdata från Bromma
Reningsverk. Den valda metoden bestod av två steg: detektion av systematiska fel och
databalansering. En fallstudie utfördes, där testades metoden på simulerad data med kända
fel, på verklig flödesdata samt i ett sista fall där den föreslagna metoden jämfördes med
flödesverifieringsmetoden. Resultaten visade att den föreslagna metoden effektivt kan de-
tektera systematiska fel när endast en flödesmätning var felaktig samt att uppskattningen av
felens magnitud var bra. Dock var den föreslagna metoden inte användbar för att verifiera
Stockholm Vatten och Avfalls metod. Med flödesverifieringsmetoden undersöks flödet i ett
filter åt gången, medan den föreslagna metoden kräver att flödet i alla 24 filter summeras.
Detta gjorde att det var svårt att jämföra de två metoderna på ett bra sätt. Metoden har
potential att vara värdefull för feldetektion i avloppsreningsverk samt att användas som ett
realtidsverktyg för att detektera fel.

Nyckelord: massbalans, avloppsreningsverk, feldetektion, databalansering, systematiska
fel, slumpmässiga fel, bias

Institutionen för informationsteknologi, Uppsala universitet (UU). Lägerhyddsvägen 2,
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Populärvetenskaplig sammanfattning

För att underhålla och förbättra avloppsreningsverk är det viktigt att noga kontrollera pro-
cessen. Drift, processmodellering och ekonomiska utvärderingar kräver att data insam-
las. Exempelvis mäts halter av fosfor, kväve samt hur mycket vatten som flödar genom
de olika delarna av anläggningen. Mätningarna sker kontinuerligt vilket genererar stora
datamängder. Processdata som insamlats innehåller ofta fel vilket t.ex. kan bero på att ett
mätinstrument täpps igen med smuts eller att mätaren är felkalibrerad. För att inte beslut
ska baseras på felaktig information är det viktigt att försöka hitta dessa fel.

Processdata från reningsverk kan innehålla två olika typer av fel: systematiska- och slump-
mässiga fel. Systematiska fel kan uppstå t.ex. när en mätare täpps och därigenom långsamt
börjar visa ett lägre värde än det verkliga. Slumpmässiga fel är alltid närvarande i process-
data och uppstår vanligen av oregelbundna störningar. Systematiska fel är generellt större
än slumpmässiga, och svårare att detektera.

I dagsläget kontrollerar Stockholm Vatten och Avfall flödesdata i sandfilterbassängerna
genom att jämföra dessa med vattennivåmätningar. Från denna jämförelse fås informa-
tion om någon av mätinstrumenten ger felaktiga data, dock inte om felet ligger hos nivå-
eller flödesmätaren. De önskar att verifiera sin metod. Syftet är därför att hitta, tillämpa
och utvärdera en alternativ metod. Målet är att med hjälp av denna metod verifiera meto-
den som Stockholm Vatten och Avfall använder, samt att förbättra flödesmätningar från
Bromma reningsverk.

Metoden som valdes är baserad på massbalansering. Massbalansering innebär att un-
dersöka hur olika flöden i ett system förhåller sig till varandra. Ingen massa försvinner
eller tillkommer i ett slutet system. Den föreslagna metoden bygger på algebra och statis-
tisk analys, och består av två huvudsteg. Först detekteras systematiska fel, därefter bal-
anseras data för att reducera slumpmässiga fel.

Ett system med fyra flöden på Bromma reningsverk undersöks, däribland flödet genom
sandfilterbassängerna. Innan metoden testades på riktig flödesdata utvärderades den på
simulerade data med tillagda fel som ökade med tiden. Resultaten visade att felet detek-
terades relativt snabbt, och uppskattningen av felets storlek stämde överens med det kända
tillagda felet. Med hjälp av metoden kan fel detekteras i verkliga data om endast ett av
de ingående flödena avviker från balansekvationerna, det vill säga innehåller fel. Om fler
flöden innehåller fel var resultaten svåra att tolka. För att lösa det problemet bör större
system med fler flöden undersökas. Det visade sig också att metoden inte var lämplig att
använda som verifiering av Stockholm Vattens och Avfalls metod. Detta eftersom Stock-
holm Vatten och avfalls metod utnyttjar information från en flödesmätare åt gången, medan
den föreslagna metoden kräver att flödet i alla 24 sandfilter summeras. Därigenom blev
metoderna svåra att jämföra.

Den föreslagna metoden genererar ibland svårtolkade resultat, men har potential att vara
värdefull för feldetektion i avloppsreningsverk och att användas som ett realtidsverktyg för
att detektera fel. Metodiken är generell och tillämpbar på olika typer av system där energi-
eller massbalanser kan ställas upp.
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1 Introduction

1.1 Motivation
In most wastewater treatment plants (WWTPs) process data are collected, and normally a large
amount of it. Common process parameters that are measured are e.g. water flow, total phos-
phorus and total nitrogen. These data provide a basis for operating the plant, process modelling
and control, economic evaluations and so on. These actions rely heavily on the accuracy of
data [Thomann, 2008].

The large amount of process data inevitably contain errors and efforts should be made to im-
prove the data quality. These errors can originate from the harsh environment where the mea-
suring equipment has to function. Process measurements can be corrupted by two types of
errors, random- and systematic (gross) errors. Random errors are mainly measurement noise
which is unavoidable and always present in process data. Gross errors are often caused by
malfunctioning measuring instruments. By maintaining the measuring equipment, gross errors
can be avoided to some extent [Narasimhan and Jordache, 2000].

To improve the accuracy of process data from WWTPs, several authors (e.g. [Meijer et al.,
2002; Puig et al., 2008; Seungchul et al., 2015]) propose the use of data reconciliation (DR)
combined with a statistical method to detect gross errors. In their suggested approaches, detec-
tion of errors are performed by checking mass balances of WWTPs. These methods provide
valuable new information about the process [Seungchul et al., 2015], and errors where success-
fully detected in each study.

Error detection methods based on mass balancing are a well-known and commonly used tech-
nique to improve process data. These techniques have been applied in e.g. petrochemical
plants, chemical plants, refineries and mineral processing industries [Narasimhan and Jordache,
2000]. Studies related to WWTPs are though rarely performed [Seungchul et al., 2015].

Only when a compound is completely recoverable from in- and outgoing flows, it can be bal-
anced. In practice, many compounds, e.g. nitrogen and organic matter, converts into gas during
the treatment process. Generally this is difficult to measure. Phosphorus do not convert to gas,
and the amount of water that convert to gas is negligible. Therefore, all flows can be measured,
which makes water and phosphorus suitable for mass balancing [Meijer et al., 2002].

In this thesis, focus will be set on finding a systematic method to detect errors using mass
balancing in process data from Stockholm Vatten och Avfall. They wish to verify the current
flow verification method used at Bromma WWTP, which will be one of the goals of this project.
Flow measurements lay the foundation for process control, mass balancing and modelling in
WWTPs, and are measured continuously. Therefore, flow measurements of water will be used
for mass balancing and the term flow balancing will be used henceforth.
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1.2 Problem formulation
Data from flow gauges are never perfect. There are always random errors present (random
noise), which often is normally distributed [Exell, 2001]. Systematic gross errors include er-
rors that are not normally distributed, e.g. when a gauge consistently measure too high or low
flow. This type of errors are more complicated to detect. Gross errors are important to detect
in order not to make decisions based on inaccurate information.

Stockholm Vatten och Avfall would like to corroborate their flow verification method, and to
increase the reliability in flow measurements at Bromma WWTP. The current method to check
flow data at Bromma WWTP is a comparison between measurements from flow gauges and
level gauges in the sand filter section. The difference in water level and volume leaving the
sand filter basins are compared during a certain period of time. From this comparison, it can
be determined if the measuring devices are providing inaccurate data. However, it can not be
determined in which gauge (flow or level) the error lies in.

An alternative approach to verify the accuracy of data is the use of flow balancing. Knowing
how the different flows relate to one another enables detection, diagnosis and estimation of both
random and gross errors. A flow balance based method could therefore provide valuable new
information. To corroborate the flow verification method and to check data for errors, a method
based on flow balancing will be used in this thesis.

1.2.1 Aim and objective

The aim of this project is to find, implement and evaluate a method based on flow balancing to
detect and locate random and gross errors.

The objective is to use this method to corroborate a flow verification method currently used by
Stockholm Vatten och Avfall, and to improve the accuracy of flow measurements at Bromma
WWTP.

1.2.2 Limitations

The following limitations were made

• Only a section of Bromma WWTP was considered: influent, aeration basins, filter basins
and effluent. Thus, four flows were analyzed. This could limit the method if more than
one flow is erroneous.

• The choice of periods to study was narrowed due to limited access of data for the effluent
flow and missing data for when the inlet hatches opens and closes. This will be further
explained in the method description.

2



2 Background and theory

2.1 Bromma WWTP
Bromma WWTP has two facilities, Åkeshov and Nockeby. At Åkeshov, there is pre-treatment,
pre-sedimentation, sludge treatment and biogas production. At Nockeby there is an activated
sludge water treatment plant and a filter plant. Every day, 126 000 m3 wastewater is treated,
which is wastewater from over 300 000 people in Stockholm [Stockholm Vatten, ND]. An
illustration of the section of Bromma WWTP which will be considered in this study can be
seen in Fig. 2.1.

Figure 2.1. The section of Bromma WWTP which was considered in this study.

The influent flow is a corrected flow; measured flows of excess sludge and flushing water is
removed from the measured influent flow to obtain the actual influent flow. This will be refer-
eed to as QIn. The uncorrected influent flow and the effluent flow (QEff ) are measured using
a venturi tube. The venturi tube has a constricted section that generates a pressure difference.
This pressure difference is used to calculate the flow. At high water levels, over 0.7-0.8 meter,
measurements are not correct regardless if the flow is high or low, since the tube gets jammed
up. An other common problem with venturi tubes is that they get clogged slowly over time and
therefore need to be continuously maintained (cleaned) to avoid erroneous measurements.

The flow in the aeration basins (QA) and the sand filter basins (QF ) are measured using a
straight constricted weir. These are constructed as an obstruction across an open channel to
measure the flow rate. The water flows over the top of the weir, then falls down to a lower
level. Since all of the water flows over the weir, and the geometry (rectangular) of the weir is
known, the water depth behind the weir can be used to calculate the flow rate [OOF, 2017].
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Like the venturi tubes, these weirs need to be well maintained to measure the flow accurately.

The current method used to verify the accuracy of measurements at Bromma WWTP, is a
comparison between outgoing flow and water level in sand filter 1-24, located in the Nockeby
facility. About once a day, the filter basins are emptied and backwashed (not simultaneously).
When the inlet hatches closes and the water level decreases, the difference in water level during
2 minutes is compared to the water flow leaving the basin during the same period.

To enable comparison between water level and flow, the difference in water level is calculated
to a flow using the basin area. The relation between measured flow (QF ) and water level (LF )
can be expressed as

QF =
∆LF
∆t

· A (1)

QFi
: measured flow [m3/s]

LFi
: measured water level [m]

A : basin area [m2]

Ideally, the measured flow equals difference in water level multiplied with the basin area and
Eq. 2 is valid. However, due to errors, they sometimes differ and an error term e is needed to
describe the relation:

QF =
∆LF
∆t

· A+ e (2)

Fig. 2.2 is an illustration of how the method works. The comparison can only be made during
depletion of water (at point of comparison plus a few minutes).

Figure 2.2. The flow verification method used by Stockholm Vatten och Avfall; an example of
how if works. a) When the inlet hatches closes and the water level decreases, an approximation
of flow calculated from the level gauge is compared to the measured flow (point of comparison),
b) A zoom in of such a period. The difference in water level can only be recalculated as a flow
during depletion of water (when the basins are emptied), thus, the blue curve is only an actual
flow at the point of comparison plus a few minutes.
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2.2 Errors
The total error in a measurement can be described by the sum of random and gross errors.
Random errors can appear due to process or measurement noise. An average of several mea-
surements containing random errors will generally be closer to the true measured value [Bell,
2001]. Gross errors are caused by non-random events such as malfunctioning instruments, foul-
ing of sensors or faulty calibration [Narasimhan and Jordache, 2000]. The difference between
these two types of errors is illustrated in Figure 2.3. Random errors increase the variation, but
the average is not affected, whereas the average of a measurement containing gross errors is
changed depending on the magnitude of the errors.

Figure 2.3. A simple example of how a measurement containing a) gross errors and b) random
errors can deviate from the true measurement.

The relation between measured value (y), random error (ε), gross error (δ) and true value (x)
can be expressed as

y = x+ ε+ δ (3)

[Narasimhan and Jordache, 2000].

2.3 Error detection based on flow balancing
Knowing how different flows in a WWTP relate to each other (checking flow balances) enables
detection, estimation and diagnosis of both random and gross errors. If the relationship be-
tween the flows is incorrect according to the balance equations, data is corrupted by an error.
The basic principle in detecting gross errors is based on the detection of bias in statistical appli-
cations. Gross errors, or equivalently significant errors, are large relative the variable’s variance
[van der Heijden et al., 1994b]. Hypothesis testing is the most commonly used method to de-
tect gross errors, where the null hypothesis H0 is that there are no gross errors present in the
data, and the alternative hypothesis HA is that there are one or several gross errors present. The
null hypothesis is accepted or rejected by a comparison with a test criterion [Narasimhan and
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Jordache, 2000].

Data reconciliation (DR) is a method to reduce the effect of random errors in a dataset. DR uses
process model constraints, adjusting measurements so that the constraints, i.e. mass balances,
are satisfied [Narasimhan and Jordache, 2000]. A data set that has been reconciled contains
less errors and satisfies the mass balances exactly [van der Heijden et al., 1994a].

Conveniently, gross error detection and data reconciliation require the same available informa-
tion when processing the data [Narasimhan and Jordache, 2000]. A prerequisite for balancing-
and gross error detection techniques to be applicable is that the measurements need to be re-
dundant. This means that a measured flow also can be calculated from other measured flows
[van der Heijden et al., 1994a].

2.3.1 Gross error detection

A method for detecting gross errors should be able to detect the presence of one or several
errors in the data set, have the ability to identify type and location of the error and have the
ability to estimate the magnitude of the errors.

For the case when the measurements satisfy the balance equations exactly, the linear constraint
model is assumed to be given by

Ay = 0 (4)

A : N ×m Process matrix
y : m× 1 vector of flow measurements

[van der Heijden et al., 1994b].

The process matrix is a linear constraint vector that contain the elemental composition of the
balances. It specifies how one flow relate to another. Every row represents a node, and the
columns correspond to the flows, thus A can be called a N × m matrix where N is number
of nodes and m number of flows. The elements in A are either negative, positive or 0 de-
pending on whether the flow is an input, an output or if it is not associated with the balance
equation [Narasimhan and Jordache, 2000]. Figure 2.4 shows an example of a process matrix
constructed from a simple system with three flows denoted F1-F3 and two nodes.

Figure 2.4. Example of a system with three flows (F1-F3) and two nodes (the small circles).

From Figure 2.4 following balances are obtained

Node 1 : F1 − F2 = 0

Node 2 : F2 − F3 = 0

6



And the process matrix A becomes

A =

(F1 F2 F3

1 −1 0
0 1 −1

)
Node1
Node2

Due to measurement errors, Eq. 4 rarely add up to zero. For all variables measured, the N × 1
vector of balance residuals r is given by

Ay = r (5)

If there are no gross errors present, r has a normal distribution with a zero mean value and a
covariance matrix Σ:

Σ = cov(r) = AV AT (6)

Σ : m×m residual covariance matrix
V : m×m measurement covariance matrix

Under H0, r ∼ N(0,Σ), the elements in the residual vector r reflect if the process constraints
(flow balances) are violated. Also, the covariance matrix Σ contains information of both the
process matrix (A) and the measurement covariance matrix (V ). Therefore, both r and Σ are
useful in constructing statistical tests to detect the existence of gross errors [Narasimhan and
Jordache, 2000].

2.3.2 Data reconciliation

DR is a technique to reduce the effect of random errors in data and improve the accuracy of
measurements. A set of balance equations is needed to verify the consistency and to improve
accuracy of measured data. Constraints can then be incorporated in that set of equations. After
such relations between measured values are made, it is possible to adjust the measured values
into estimate values consistent with the constraints.

To improve the accuracy of data using DR, certain assumptions must hold. The measured val-
ues must not contain gross errors, or large random errors. If this is not the case, DR can lead
to incorrect adjustments of the measured values. Thus, it is crucial to check the data for gross
errors prior to obtaining final estimates via DR. Also, no relevant components (e.g. flows) in
the set of linear constraint equations can be omitted [van der Heijden et al., 1994b].

The general data reconciliation problem can be stated as

min
y−ŷ

(y − ŷ)TV −1(y − ŷ) (7)

s.t Aŷ = 0
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y : m× 1 vector of raw measurements
ŷ : m× 1 vector of estimates
V : m×m measurement covariance matrix
A : N ×m process matrix

2.4 Related research
Statistic techniques for detecting gross errors and to reconcile data from biochemical processes
was developed by van der Heijden et al., [1994a]. The use of DR and methods for gross error
detection in WWTP is an active research area, but has not received much attention so far [Le
et al., 2016]. Only a limited number of studies related to WWTP are available at this time.
Those found to be relevant to this study, ([van der Heijden et al., 1994a,b,c; Meijer et al., 2002;
Puig et al., 2008; Seungchul et al., 2015; Le et al., 2016]) will be discussed below.

van der Heijden’s method, described in van der Heijden et al., [1994a,b,c] is based on the fact
that all systems can be described by a set of linear equations. It was implemented in ”Mac-
robal”, a free domain software originally developed to balance flows and compounds from the
fermentation industry. The method can though easily be implemented in e.g. MATLAB1 since
it is based on matrix algebra and statistical analysis [van der Heijden et al., 1994a].

Meijer et al., [2002] was the first to apply Heijden’s method on data from a WWTP [Brd-
janovic et al., 2015]. They applied the method on annual average measurements from a full-
scale WWTP, which revealed major errors in the process flows and data could be improved.
This method has been tested on several WWTPs in the Netherlands, with successful results
[Meijer et al., 2002]. Puig et al., [2008] continued in the same line by proposing a practical
methodology to detect errors in historical data of a full-scale WWTP. They obtained useful and
new information for evaluation, design and benchmarking purposes, and concluded that faulty
historical data result in large errors when key operational conditions are calculated [Puig et al.,
2008].

van der Heijden’s method consists of four steps, and the step for detecting gross errors in turn
consists of four additional steps (a-b):

1. Selection of measured and non measured components (e.g. flow)

2. Classification of components into four categories; balanceable, non-balanceable and cal-
culable, non-calculable

3. Calculation of the optimal estimates for the components

4. Gross error detection, diagnosis and estimation

(a) Detection: Testing if there are one or more significant error present

(b) Classification of errors (1. One or several of the measurements has a significant
error, 2. The definition of the system is incorrect or 3. The test is too sensitive due
to small variances)

1 c© 2017 The MathWorks, Inc. MATLAB and Simulink
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(c) Locating the error source

(d) Estimation of error magnitude

In Macrobal, gross errors are detected by evaluating the residuals for each balance equation
using a statistical test. In an ideal case, the mass balances add up to zero, but due to errors the
balances have residuals. This vector of residuals (rn) is constructed for each set of measured
values. For n number of massbalances and j = m + u where m is measured flows and u
unmeasured (calculated) flows (e.g. water flow, P, N etc.), the residuals are calculated as

rn =

j∑
i=1

QiXi,n (8)

Qi : Vector of flows (measured or calculated)
Xi,n : Elements in each mass balance (elements in the process matrix)
n : Number of mass balances

When n = u, (thus when the number of mass balances equals the number of calculated flows),
the system can be solved, and if n > u the system is called over determined, which can be
expressed as the degree of redundancy.

n− u = degree of redundancy (9)

If the degree of redundancy is equal to or larger than 1, the system can be balanced [Meijer
et al., 2002].

The residual vector rn is compared to certain compare vectors which corresponds to a specific
source of an error. For a measurement k, the compare vector ck is the corresponding column
in the reduced process matrix A′, which is obtained by removing all linearly dependent rows in
A, so that A becomes linearly independent.

c = A′ = RA (10)

c : Compare matrix
A′ : Reduced process matrix
R : Reducing matrix

The residual vector and the compare vector are compared in a statistical test. Gross errors
present in the flow vector can be detected by systematically redefining the measured flow to an
unmeasured flow until the statistical test is passed. Gross errors caused by incorrectly defined
mass balances of faulty measurements can be detected by systematically removing balances
until the statistical test is passed [van der Heijden et al., 1994b].

Another approach to find gross errors after the detection step, is the serial elimination strategy.
This is performed by removing one measured component at a time until the statistical test is
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passed, used by e.g. Xiaolong et al., [2014]. Their aim was to identify gross errors in power
plants via DR [Xiaolong et al., 2014]. This strategy is often used in combination with balancing
methods, but has according to van der Heijden [1994b] a few shortcomings compared to their
method. The serial elimination strategy provide more unambiguous results, but consideration
is not taken to all possible events that can result in inconsistency; identification of errors in the
system descriptions is not explicit. Another advantage with van der Heijden’s method is that
the magnitude of the error can be estimated.

Seungchul et al., [2015] uses a similar approach as previously mentioned authors [van der
Heijden et al., 1994a,b,c; Meijer et al., 2002; Puig et al., 2008] but proposes a new DR scheme
using a closed loop mass balance and the Lagrange multiplier method. Influent data were
generated using a Monte Carlo simulation, thus, the study was based on a simulated WWTP
model. Three case studies were performed. In the first case, no gross errors were considered,
in the second case, a gross error was set in the process data and in the third case, the first two
cases were compared. Seungchul’s method consists of two steps:

1. Mass balancing and the Lagrange multiplier method

2. Data verification and data reconciliation

To solve the constraint optimization problem 7, Seungchul propose the use of a Lagrange mul-
tiplier (λ). The Lagrange multiplier method is a straight forward strategy for finding the local
maxima and minima of a function, subject to certain constraints.

Le et al,. [2016] demonstrates an application of a bilinear steady-state DR and gross error de-
tection, in contrast to the work of van der Heijden et al., [1994a,b,c] where the mass balances
were expressed in linear terms. The aim was to evaluate consistency of measured data and to
estimate unknown parameters. Implementation was made in MATLAB, and the algorithm was
tested on measured data from a full-scale partial nitration reactor (SHARON), which is used
for treating wastewater with high levels of ammonium. This approach allowed to reducing the
number of unknown variables, and increase the number of variables that could be balanced and
estimated [Le et al., 2016].
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3 Method

3.1 Choice of method
The system examined in this thesis was quite simple relative to the systems that were balanced
in Meijer et al., [2002] and Puig et al., [2008]. It was unlikely that errors would be present
due to an inaccurate system description, thus, the major drawback with the serial elimination
method was indifferent. However, the magnitude of the errors could not be estimated after the
serial elimination method, which was desirable if the erroneous data was to be corrected.

The approach by Le et al., [2016] would be interesting for a process with many unmeasured
flows, which was not the case in this study. Therefore, the basis of van der Heijden’s method
was used. This method had generated successful results and had been well cited in published
articles on the subject.

A few modifications were made. The initial steps were somewhat simplified since all variables
were measured, and the Lagrange multiplier method used in [Seungchul et al., 2015] was used
since it was a convenient approach to solve an constrained optimization problem. Initially the
method was evaluated using simulated data where known errors was added.

The following methodology was chosen for error detection in this thesis.

Step 1: Formulation of flow balances and the process matrix

Step 2: Gross error detection, diagnosis and estimation

Step 2a: Detection; testing if there are one or more significant gross error present

Step 2b: Locating the error source (diagnosis)

Step 2c: Estimation of error magnitude

Step 2d: Correcting data for gross errors

Step 3: Calculation of the optimal estimates for the flows via data reconciliation using the

Lagrange multiplier method

The suggested method was tested in three case studies. Before describing the method in detail,
the conditions in each case were described.

3.2 The case studies
In all three cases, series of averages were created for subsets of the full datasets (not a moving
average). The range was set to 60 data points, e.g. if the entire dataset contained 3000 data
points, it was divided into 50 subsets for which an average was calculated, resulting in 50 data
points. All test parameters were calculated for each average series, consequently 60 time steps
at the time. For Case 2 and 3 where real process data was analyzed, this corresponded to 1 hour
since the data resolution was in minutes. For Case 1 the time was given in time steps.

11



3.2.1 Case 1

In Case 1, the suggested method was evaluated on three different simulated WWTP datasets
with known added errors.

Initially, four static signals (amplitude = 1) were created. To resemble a dataset only containing
random errors, normally distributed random noise (mean value = 1, variance = 0.0065-0.0067)
were added (simulated dataset 1). To investigate how the method would perform with system-
atic errors present, a bias (slope = 0.1) was added on one of the four signals (Simulated dataset
2). In Simulated dataset 3, the same bias was added, but the variance of the random noise was
increased (mean value = 1, variance = 0.013-0.015).

3.2.2 Case 2

In Case 2, the method was evaluated on real WWTP flow data from Bromma WWTP. Stock-
holm Vatten och Avfall provided flow data for the influent, aeration basins and sand filter basins.
Data for the effluent flow was provided by Norrenergi and limited to four datasets over totally
22 days during 2014 and 2015. To investigate all four flows, these periods were used.

In Fig. 3.1 a), one of the available datasets were shown (all datasets are given in Appendix
A.). It could be seen that there was a time shift in QEff . Also, QA and QF were considerably
lower than QIn and QEff when the flow quickly increased and leveled out after October 8th.
This likely occurred because the flow suddenly increased fast and there was a flow restriction in
these two basins; the excess water was side-stepped. The time shift on QEff probably occurred
because the water travels a distance before it was measured. In Fig. 3.1 b), the time shift in
QEff was corrected by displacing the flow data vector two hours back in time. Thereof there
were missing data for QEff the last two hours in this graph. Also, the bypass flow was added
to QA and QF .

Figure 3.1. One of the available datasets. a) The raw data set, b) QEff has been time-shifted 2
hours back in time. For QA and QF there was a limit to how much water that could enter the
basins. When the flow increased, some of the water bypassed. This bypass flow was added.
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Between October 8th to 9th in Fig. 3.1, the flow gauges leveled out, which probably occurred
due to high water levels or high flows; the measuring equipment could only measure up to
a certain level. These periods were not considered in this study since the suggested method
would misinterpret the difference between the flows as gross errors.

The suggested method was evaluated on two shorter periods (one or two days at the time) on
both uncorrected data and data corrected for time shift and bypass flow (see Fig. 3.1). The first
period was during October 7th and the second during September 8-10th.

3.2.3 Case 3

In case 3, the method was compared to the flow verification method used by Stockholm Vatten
och Avfall. Step 1 and 2(a-c) was performed on flow data from April 3-10th 2017 and May 15-
21th 2017. A description of the flow verification method is given in Background and Theory.
The initial plan was to perform the comparison between the two methods on the same periods
as in Case 2. However, due to absence of data for the inlet hatches during 2014 and 2015 (which
was necessary to enable implementation of the flow verification method), the comparison to the
flow verification method was performed on more recent data from 2017. Data forQEff was not
available for these periods, thus, there were only three flows to include in the suggested method.

The flow verification method was used to calculate the difference between measured and calcu-
lated flow in the 24 sand filters (QFi

, i = 1, ..., 24) during these periods. Differences between
measured and calculated flow in the filters could thereby be compared the results from the sug-
gested method during the same periods. If a difference between measured and calculated flow
could be connected to a significant error found in QF using the suggested method, this would
imply that the measured flow was incorrect. If differences between measured and calculated
flow could not be connected to the results from the suggested method, this would imply either
that the calculated flow (thus level measurement) was incorrect or that the two methods were
unsuitable to compare.

3.3 Step 1: Formulation of flow balances and the process matrix
As a first step, flow balances and the process matrix A were constructed.

3.3.1 Case 1

For all three tests in Case 1, the system was described as follows:

Node 1 : Q1 −Q2 = 0 (11)

Node 2 : Q2 −Q3 = 0 (12)

Node 3 : Q3 −Q4 = 0 (13)

with the raw measurement vector

y = [Q1, Q2, Q3, Q4] (14)

13



and the process matrix

A =

1 −1 0 0
0 1 −1 0
0 0 1 −1

 (15)

Since the rows in A were linearly independent, A did not have to be reduced according to Eq.
10 to obtain the compare vectors ci, hence Ai = ci in this case.

3.3.2 Case 2

From the system in Figure 2.1 following flow balances were constructed over each node:

Node 1 : Qin −
6∑
i=1

QA(i) = 0 (16)

Node 2 :
6∑
i=1

QA(i) −
24∑
i=1

QF (i) = 0 (17)

Node 3 :
24∑
i=1

QF (i) −Qeff = 0 (18)

with the raw measurement vector

y = [Qin,
6∑
i=1

QA(i),
24∑
i=1

QF (i), Qeff ] (19)

and the process matrix

A =

1 −1 0 0
0 1 −1 0
0 0 1 −1

 (20)

The same conditions as in case 1 applied in this case: A did not have to be reduced to obtain
the compare matrix c.

3.3.3 Case 3

Since there were three flows and two nodes in this case (QEff was not included), following
flow balances describe the system:

Node 1 : Qin −
6∑
i=1

QA(i) = 0 (21)

Node 2 :
6∑
i=1

QA(i) −
24∑
i=1

QF (i) = 0 (22)
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with the raw measurement vector

y = [Qin,

6∑
i=1

QA(i),

24∑
i=1

QF (i)] (23)

the process matrix became

A =

[
1 −1 0
0 1 −1

]
(24)

Since the rows in A were linearly independent, A did not have to be reduced to obtain the
compare matrix c.

3.4 Step 2: Gross error detection, diagnosis and estimation
As a final step, found gross errors were removed from the initial measurements, resulting in an
improved set of data.

3.4.1 Step 2a: Detection

The step for detecting gross errors were based on hypothesis testing, where:

H0 : No gross errors present

HA : One or several gross errors present

H0 was accepted or rejected by comparing a test statistic γ with a threshold value [Narasimhan
and Jordache, 2000].

γ = rTΣ−1r (25)

γ : Test statistic
r : 1 ×N vector of balance residuals
Σ : Covariance matrix of the balance residuals (see Eq. 6)

It could be proven that the test statistic γ follows a χ2-distribution with υ degrees of freedom
equal to the rank of Σ. For the chosen level of significance α, the test criterion became χ2

1−α,υ.
If γ ≥ χ2, an error was significant [van der Heijden et al., 1994b].

In all performed gross error detection tests, the test criterion was set to χ2
1−0,005,DF , which

means that the level of significance was 0,005. The χ2-value (the test criterion) was read from
a χ2-distribution table and differed depending on the numbers of degrees of freedom, which
was equal to the rank of Σ.
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3.4.2 Step 2b: Locating the error source

If a significant gross error was detected in Step 2a, its source could be found by performing an
error diagnosis.

Given the residual vector r with a covariance matrix Σ, it must be determined if the compare
vector c or a multiple of c was a sample of the residual vector r. In van der Heijden et al.,
[1994b] this was denoted ” if r and c point in the same direction”. As explained in Background
and theory (see Eq. 10), the compare matrix c was the reduced process matrix A. Each column
in c were compared to the corresponding measurement.

To examine how well ci compared with r, the residual fit Ψ of the vector c was calculated,
which was the following probability

Ψ = p(∆2 ≤ χ2) (26)

∆2 : Test statistic

As any probability, Ψ lied within 0 and 1. A small residual fit implied that c did not resemble r,
hence, the corresponding source of error was not a suspect and vice-versa with a high value of
Ψ. It was not a definitive measure but an indication to which flow that differed the most from
the others.

For a measurement l, the test statistic ∆2
l was calculated as

∆2
l = rTΣ−1r − (rTΣ−1cl)

2

cTl Σ−1cl
(27)

∆2
i : Test statistic for measurement i
r : 1 ×N vector of balance residuals
Σ : Covariance matrix of the balance residuals (see Eq. 6)
cl : 1 ×N Compare vector for measurement l

∆2 had a χ2-distribution with a number of degrees of freedom equal to the rank of Σ minus 1
[van der Heijden et al., 1994b].

3.4.3 Step 2c: Estimation of magnitude

When a source of a significant error had been located, its magnitude s could be estimated by
[van der Heijden et al., 1994a]

ŝl =
cTl Σ−1r

cTl Σ−1cl
(28)
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ŝi : Estimate of the error magnitude for measurement l
cl : 1 ×N Compare vector for measurement l
Σ : Covariance matrix of the balance residuals (see Eq. 6)
r : 1 ×N Vector of balance residuals

3.4.4 Step 2d: Correcting data for gross errors

If an error had been detected, located and its magnitude was estimated, the corresponding
measurement should be corrected. This could be performed by simply subtracting the estimated
error (ŝ) from the erroneous flow.

3.5 Step 3: Calculation of optimal estimates
In this step, the optimal estimates were calculated via DR using the Lagrange multiplier method.
Eq. 7 was minimized using a Lagrange multiplier λ. The estimates (ŷ) were calculated from

λ = I − V AT (AV AT )−1A (29)

ŷ = λy (30)

λ : Lagrange multiplier
I : m×m identity matrix
V : m×m covariance matrix
y : m× 1 vector of raw measurements

This step should only be performed if the gross error detection steps showed that there were
no gross errors present, or if detected errors were successfully removed[Plasma Processing
Laboratory, 2013].

4 Results

4.1 Case 1: Simulated data
The rank of Σ was 3, which gave a test criterion χ2 = 12.84.

4.1.1 Gross error detection

Simulated dataset 1
The dataset (Fig. 4.1 a) consisted of four generated signals with added random noise, which
resembled a dataset containing only random errors. The noise had a standard deviation of 0.08
and was normally distributed with a variance between 0.0065 - 0.0067, see Appendix B.

The test statistic (Fig. 4.1 c) was not exceeded at any time, thus there were no gross errors or
large random errors found.
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Figure 4.1. Gross error detection performed on simulated dataset 1 where there were no gross
errors present, only random noise. a) The simulated dataset, b) Step 2a, testing if there were
any significant errors present, c) Step 2b, locating the error source, d) Step 2c, estimating the
error magnitude.

Simulated dataset 2
A gradually increasing bias (slope 0.1) was added Q2 (Fig. 4.2 a), which means that the dataset
contained both random- and gross errors. The noise had the same properties as in Simulated
dataset 1. As could be seen in Figure 4.2 b) a bias was detected around time step 30. To draw
conclusions about what signal that was biased, the residual fit (Fig. 4.2 c) was examined. The
residual fit was the probability that the error was in that specific flow. It was about equal for all
flows at t=0. As the bias increased, the probability that the error was in Q1, Q3 or Q4 decreased
and the residual fit for Q2 remained > 90%. This indicated that the bias lied in Q2. The
estimated error magnitude (Fig. 4.2 c) for Q2 seemed to correlate well with the added bias. At
t=100 the magnitude was approximately 1, which looked likely when comparing to the dataset.
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Figure 4.2. Gross error detection performed on simulated dataset 2 where there were an in-
creasing bias added to Q2 and random noise in each signal. a) The simulated dataset, b) Step
2a, testing if there were any significant errors present, c) Step 2b, locating the error source, d)
Step 2c, estimating the error magnitude.

To investigate how well the method detected this type of bias, and to remove the bias that was
found in the signal Q2, a linear regression model was created for the estimated magnitude of
the error found in Q2. A linear model was created instead of simply subtracting the errors since
the added bias was linear. This enabled comparison between the added slope to the estimated
one. If the estimated errors were assumed to be normally distributed, a linear regression model
describing ŝ in Fig. 4.2 d) was given by

ˆ̂s = 0.00999t+ 0.0004 (31)

This model had a r2-value of 0.899, which indicated that the model described ŝ well. Also,
the estimated slope was very similar to the added one, which indicated that the estimation of
the error was good. In Fig.4.3 a), the bias was corrected by subtracting the coefficient of slope,
0.00999t, from the raw data from time step 30. When re-doing the error detection test, no
significant errors were found.
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Figure 4.3. A linear regression model was created for the estimated magnitude of the error
found in Q2. a) The simulated data in Figure 4.2 had been corrected by subtracting the esti-
mated coefficient of slope, b) The estimated error on Q2 and a linear model to describe it.

Simulated dataset 3
In Figure 4.4 the same bias was added to Q2, but the noise standard deviation on all signals was
increased to 0.12. The noise was normally distributed with a variance between 0.013 - 0.015,
see Appendix B. Here, the bias was not detected until around time step 88, see Fig. 4.4 b). This
was expected since the variance was larger.

Figure 4.4. Gross error detection performed on simulated dataset 3 where there was an increas-
ing bias added to Q2 and random noise (increased compared to simulated dataset 2) in each
signal. A) The simulated dataset, b) Step 2a, testing if there were any significant errors present,
c) Step 2b, locating the error source, d) Step 2c, estimating the error magnitude.
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A linear regression model for the estimated magnitude of the error was created for the data set
in Figure 4.4 as well.

ˆ̂s = 0.01t− 0.0089 (32)

This model had a r2-value of 0.901, which indicated a good fit to the estimated error. The esti-
mated slope equaled the one added to Q2, which indicated that the estimation of the error was
good. In Figure 4.5 a), the bias was corrected by subtracting the coefficient of slope 0.01t from
the raw data from time step 88. When re-doing the error detection test, no significant errors
were found.

Figure 4.5. A linear regression model was created for the estimated magnitude of the error
found inQ2. a) The simulated data in Figure 4.4 has been corrected by subtracting the estimated
coefficient of slope, b) The estimated error in Q2 and a linear model to describe it.

4.1.2 Data reconciliation

Since the gross errors were detected and removed, the DR step could be performed to obtain
the final estimates. The DR was performed per 60 time steps. In Figure 4.6, simulated dataset
2 and 3 had been reconciled. The flows (Q1, ..Q4) in each dataset (simulated dataset 2 and
3) were now identical and free from systematic errors. They satisfied the balance equations
exactly.
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Figure 4.6. DR was performed on simulated dataset 2 (a) and 3 (b). The flows (Q1, ..Q4) in
each dataset (simulated dataset 2 and 3) were now identical and the balance equations were
satisfied exactly.

In Table 4.1, mean values of the raw datasets, the gross error free datasets and the reconciled
datasets were shown. As expected, the mean value ȳ forQ2 were higher than for the other flows.
After the removal of gross errors, the mean values for the flows in dataset 2 were identical, and
for dataset 3 they were almost identical. The standard deviation for Q2 were lowered in both
cases. After the DR, the mean values were identical i both cases, and the standard deviations
were decreased.

Table 4.1. Mean values ± standard deviation of the raw data (ȳ), the data where gross errors
were removed (¯̃y) and the reconciled data where random errors were removed (¯̂y) for simulated
dataset 2 and 3.

Simulated dataset 2 ȳ ¯̃y ¯̂y
Q1 1.00 ± 0.08 1.00 ± 0.08 1.00±0.01
Q2 1.79 ± 0.46 1.00 ± 0.08 1.00±0.01
Q3 1.00 ± 0.08 1.00 ± 0.08 1.00±0.01
Q4 1.00 ± 0.08 1.00 ± 0.08 1.00±0.01
Simulated dataset 3 ȳ ¯̃y ¯̂y
Q1 1.00 ± 0.19 1.00 ± 0.19 1.00±0.01
Q2 1.79 ± 0.49 1.01 ± 0.20 1.00±0.01
Q3 1.00 ± 0.20 1.00 ± 0.20 1.00±0.01
Q4 1.00 ± 0.19 1.00 ± 0.19 1.00±0.01

4.2 Case 2: Real WWTP data
As in Case 1, the rank of Σ was 3, which gave a test criterion χ2 = 12.84. The method was
tested on both the raw and the corrected data sets, see Figure 3.1, mainly to see if the method
was able to detect the time shift.
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4.2.1 Gross error detection: Period 1

In Fig. 4.7 a) there was a distinct time shift on QEff from 06:00 plus a few hours. This
deviation seemed to be detected when viewing the test statistic graph (Fig. 4.7 b). The residual
fit (Fig. 4.7 c) implied that the error lied in QEff at this time. The estimated magnitude or
the error (Fig. 4.7 d) showed that QEff was lower than the other flows during this time. The
second top in the test statistic graph, at 12:00, was difficult to interpret when looking at the
residual fit.

Figure 4.7. Step 1-2abc performed on data from 7 October 2014. a) Raw data, 24 h, b) Calcu-
lated test statistic, c) Calculated residual fit, d) The estimated magnitude of the error.

In Fig. 4.8 a), the time shift was corrected (shifted 2 hours back in time). A significant error
was still found between 06:00 and 12:00, see Fig. 4.8 b), only now the residual fit graph (Fig.
4.8 c) implied that the error most likely lied in QA at this time. Viewing the corrected raw data
in Fig. 4.8 a), this looked likely since QA lied lower than the other flows at this time.
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Figure 4.8. Step 1-2abc performed on data from 7 October 2014. a) Corrected raw data, 24 h,
b) Calculated test statistic, c) Calculated residual fit, d) The estimated magnitude of the error.

4.2.2 Gross error detection: Period 2

In Fig. 4.9 a), neither the time shift or the bypass flows were corrected. It could be seen that
QA distinctly differed from the other flows during the entire period, but the time shift in QEff

was not so apparent. The test statistic exceeded the test criterion almost the entire period (see
Fig. 4.9 b), and the residual fit implied that the significant error lied in QA (see Fig. 4.9 c). The
estimated error magnitude decreased with time (see Fig. 4.9 d), as did the difference between
QA and the other flows in the raw data figure.
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Figure 4.9. Step 1-2abc performed on data from 8-10 September 2015. a) Raw data, 24 h, b)
Calculated test statistic, c) Calculated residual fit, d) The estimated magnitude of the error.

Since the test statistic exceeded the test criterion almost the entire period (Fig. 4.9 b), and QA

dominated in the residual fit graph (Fig. 4.9 c), it was very likely that the error lied in QA.
Therefore, the estimated error in QA was removed to investigate how good the estimation was.
In Figure 4.10, the estimated error in QA was subtracted from the raw data. The error seemed
to be well estimated since QA now matched the other flows well. To investigate this further, the
time shift in QEff also was removed from this dataset and the method was tested once again.

Figure 4.10. The estimated error found in QA had been subtracted from the raw data for QA.
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In Fig. 4.11 a), both QA and the time shift in QEff was corrected. Compared to Figure 4.9,
data was less erroneous. The test criterion was exceeded between 04:00 and 8:00 on the 8th
(Fig. 4.11 b), but it was difficult to connect this error to any of the flows since the residual fit
was zero for all flows 06:00. However, data was improved compared to the original dataset in
Figure 4.9.

Figure 4.11. Step 1-2abc performed on data from 8-10 September 2015. a) Corrected raw data,
24 h, b) Calculated test statistic, c) Calculated residual fit, d) The estimated magnitude of the
error.

4.2.3 Data reconciliation: Period 2

Since the most of the gross errors had been removed from the dataset in Figure 4.11, DR could
be performed. In Figure 4.12, DR had been performed. The flows were now identical and free
from random errors (random noise).
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Figure 4.12. Random errors removed from the gross error free dataset in Fig. 4.11.

In Table 4.2, mean values of the raw dataset, the gross error free dataset and the reconciled
dataset were shown. The mean values for QA in the raw dataset (Figure 4.9) was lower com-
pared to the other flows. After the gross errors were removed, the mean for QA was closer to
the other flows. After the DR the mean values for all four flows were identical.

Table 4.2. Mean values ± standard deviation of the raw data (ȳ), the data where gross errors
were removed (¯̃y) and the reconciled data where random errors were removed (¯̂y).

ȳ ¯̃y ¯̂y
QIn 3.04 ± 0.19 3.04 ± 0.19 3.10 ± 0.18
QA 2.72 ± 0.05 3.10 ± 0.18 3.10 ± 0.18
QF 3.13 ± 0.20 3.13 ± 0.20 3.10 ± 0.18
QEff 3.19 ± 0.20 3.19 ± 0.20 3.10 ± 0.18
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4.3 Case 3: Comparison to the flow verification method
The comparison was performed on two periods: April 3-10th 2017 (Period 1) and May 15-21th
2017 (Period 2). The rank of Σ was 2, which gave a test criterion χ2 = 10.6.

4.3.1 Period 1

In Fig. 4.13 b), the test statistic did not exceed the test criterion at any time, thus no gross errors
were found during this period.

Figure 4.13. The method was tested on a dataset with three flows. a) The dataset on which
the method was tested, b) Step 2a, testing if there were significant errors present, c) Step 2b,
Locating the error source, d) Step 2c, Estimating the error magnitude.

The results from the flow verification method reveled no major differences between calculated
and measured flow in QF in any of the filters during this period. The largest difference was
about 2.9 % in filter 4 on April 8th 13:00.

4.3.2 Period 2

In Fig. 4.14 b), the test statistic exceeded the test criterion for a short period during the 18th of
May.
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Figure 4.14. The method was tested on a dataset with three flows. a) The dataset on which
the method was tested, b) Step 2a, testing if there were significant errors present, c) Step 2b,
Locating the error source, d) Step 2c, Estimating the error magnitude.

When zooming in at the period where the error was found (Fig. 4.15), it was difficult to interpret
the results. The error was found approximately May 17th 23:30, but from the residual fit (Fig.
4.15 c) it was difficult to determine in which flow the error was in.
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Figure 4.15. Testing the method on a dataset with three flows. a) The dataset on which the
method was tested, b) Step 2a, testing if there were significant errors present, c) Step 2b, Lo-
cating the error source, d) Step 2c, Estimating the error magnitude.

The results from the flow verification method reveled a few differences between the measured
flow and the flow calculated from the level measurement. The largest differences were pre-
sented in Table 4.3. The biggest difference was 9,3 % in filter 16 on May 16th. However, non
of the differences presented in Table 4.3 could be related to the error found in Fig. 4.15, partly
because it could not be concluded if the error was in QF but also because the date and time did
not match.

Table 4.3. Results from the flow verification method; the largest differences found when the
measured flow was compared to the flow calculated from the level measurement between 15-21
May 2017.

Filter no. Difference [%] Date
3 8,5 17-May-2017 06:00
3 5,5 18-May-2017 18:42
6 6,5 17-May-2017 18:33
9 5,6 18-May-2017 05:51

16 9,3 16-May-2017 02:15
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5 Discussion
The aim with this thesis was to find, implement and evaluate a method based on flow balanc-
ing to detect and locate random and gross errors. By compiling relevant literature, a suitable
method was found and successfully implemented in MATLAB. The evaluation was performed
on simulated data and showed that the method was efficient in detecting an increasing bias and
that the estimation of the error magnitude corresponded well to the added bias.

One of the objectives was to improve the accuracy of flow measurements. For that purpose, the
method was tested using real WWTP data. The method was able to detect distinct time shifts,
which meant that time shifts needed to be corrected prior to using the gross error detection
method to avoid false positives. Gross errors were detected as well, although, sometimes it was
difficult to interpret the residual fit to determine which flow that contained an error. When a
gross error had been detected, and the results were explicit, this error could be corrected using
the estimated error magnitude.

In Figure 4.9 where the method was tested on raw data, there was a distinct difference between
QA and the other flows. Viewing the entire dataset in Figure 3.1 it looked as if this difference
occurred because the bypass flow was not included. Thus, the difference probably did not con-
cern a systematic error. However, it was an interesting period to test the method since only one
flow differed from the others.

The objective was also to use the chosen method to corroborate the flow verification method
used by Stockholm Vatten och Avfall. Nothing explicit could be concluded from this compari-
son. When constructing the flow balances which were necessary for the chosen method, the 24
measured flows in the sand filter section were combined. Using the flow verification method,
each of the 24 flows were examined. This made it difficult to compare the two methods. The
method used in this thesis was probably not sensitive enough to detect deviations in one filter
basin at the time.

The gross error detection method was not only able to detect and estimate gross errors, but large
random errors as well (Fig. 4.11). If the test statistic only exceeded the test criterion for a short
period of time, this was most likely evidence of a large random error since gross errors often in-
creased or decreased over time. However, it was important to detect large random errors as well.

The method was implemented in MATLAB, and the script was written so that series of subsets,
60 time steps at the time, was created of the full dataset. Each parameter (residual fit, test
statistic etc.) was calculated per subset. The range of 60 time steps was chosen after testing
different ranges. When using a smaller range, e.g. 30 data points, smaller deviations and ran-
dom errors were detected but the results were difficult to interpret. When using a wider range,
e.g. 120 time steps, only major errors were detected. Since gross errors often are quite major
and increasing/decreasing over time, e.g if a measuring device slowly gets clogged, a wider
range is probably preferable. Depending on what type of errors that one wished to detect, the
choice of time range was important. If re-doing the tests, a time range of 120 data point would
be preferable. This would make the results easier to interpret, and the method would only find
major errors. The script was also tested on the entire datasets (the mean value of the entire
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period). This approach was not chosen since the method got to insensitive to deviations in
the included flows. Also, dividing the datasets into subsets and performing the calculations on
these subsets produced vectors with several data points of the test parameters which gave more
detailed results.

The interpretability of the results were good when analyzing simulated data. The test statistic
steadily increased over time as the difference between the biased flow and the other flows in-
creased. Simultaneously, the residual fit was close to 100 % for the biased flow while it for the
other flows quickly decreased towards zero. In case 2 where real WWTP data was analyzed,
it was not as easy to interpret the results. Real data had more noise and variation between the
flows. As described in van der Heijden et al., [1994b], it could be difficult to conclude which
measurement the error descended from (interpreting the residual fit). There were often many
possibilities since the residual fit was a probability calculated for each flow and these could be
similar. For that reason, the method was tested on short periods, 1-3 days at the time in case
2. However, since all parameters were calculated for determined subsets of the full dataset, it
would be possible to analyze longer periods.

The data reconciliation step reduced random noise and yielded datasets that fitted the balance
equations exactly. This proved to be an easy and efficient approach to reduce the effect of ran-
dom errors.

In Fig. 4.2 (d) and 4.4 (d), there was a negative slope on the estimated magnitude of the er-
ror for Q1, Q3 and Q4. This was unexpected since the residual fit in both cases implied that
only Q2 was erroneous, thus, the estimated magnitude of the error for Q1, Q3 and Q4 should
be zero. However, since the estimated magnitude of the error (ŝ) was a calculation of how
large the difference between the flows were with respect to the balance equations, this was
not very strange. When calculating ŝ, the other test parameters (test statistic and residual fit)
were not considered. Basically, in this case, ŝ told us that there either was a negative error in
Q1, Q3 and Q4 or a positive error in Q2, and to find out which statement that were correct, one
had to observe the residual fit and test statistic first.

The flow verification method had a few disadvantages compared to the method used in this
thesis. The information that could be retrieved from the flow verification method was whether
or not there was a difference between measured and calculated flow from level measurements
in the 24 sand filters, thus if one of these measurements were erroneous. However, it could
not be determined in which measurement the error was in. With the suggested method used
in this thesis, a lot more information could be gained: did data contain errors, what kind of
error (random or gross) was present, which flow measurement the error descend from and the
magnitude of the error. Also, the suggested method could be used to analyze different kinds of
process data and large systems. The flow verification method demanded manual monitoring,
whereas the suggested method easily could be automatized.

In comparison to previous research where the same or similar methods were used, the systems
examined in this thesis were very simple. The constructed mass balances basically said that the
influent flow equaled the flow in the aeration basins which equaled the flow in the sand filters
and so on. This resulted in few constraints and few balance equations. Only analyzing a few
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flows, as in this case three or four flows, was probably not optional when using this method.
If more than one flow are erroneous, the method was not able to distinguish which flows that
were erroneous and which were not. An example of this problem can be seen in Figure 4.11.
The test statistic was exceeded but the residual fit was zero for all flows at this time. This
was probably because none of the flows correlated well with each other; the method could not
point out which flow that did not fit the balance equations. Therefore it would be preferable to
analyze more flows, since it is more likely that the method would have several correct flows to
compare with.

The serial elimination method was another approach to locate the error source, used by e.g. Xi-
aolong et al., [2014]. Since the system examined in this thesis were simple, and it was unlikely
that errors descended from an incorrect system description, this method could have been used
and probably resulted in a decent identification of the error source. However, according to van
der Heijden et al., [1994b], the serial elimination method provided ambiguous results. Using
van der Heijden’s method enabled estimation of the error magnitude, which were one major
reason to why it was chosen in this thesis.

In future studies it would be interesting to analyze more flows and more complicated systems
to increase the reliability and to see how the method performed. The time range should be in-
creased, mainly to simplify interpretation of the results. There was potential in developing this
method to function as a live tool to detect errors, to run the detection script continuously and
get a notification whenever a significant error was found, thus get a warning when the flows did
not fit the balance equations and something was wrong. The number of flows (or other process
data) to be included and the structure of mass balances were straight forward to alter.

It was difficult to compare the results retrieved in this thesis with results from the previous
studies. van der Heijden et al., [1994b] examined a fermentation process, and the few authors
that examined process data from WWTPs balances, analyzed sludge production systems or
other processes, not only water flow as in this study. However, the conclusions in their studies
had a common denominator: the method provided valuable information regarding measurement
accuracy and errors were detected, which also applies on the results from this study.

6 Conclusions
In this thesis, a suitable method for detecting gross and random errors was found and success-
fully implemented. The evaluation showed that the method was efficient in detecting gross
errors when only one out of the analyzed flows were biased, and when that bias was large.
The estimation of the magnitude of such an error was good, which made it straight forward to
correct data and to obtain a dataset without gross errors.

Furthermore, the following conclusions could be made

• The gross error detection method was not only able to detect gross errors, but large ran-
dom errors as well

• Time shifts needed to be corrected prior performing the gross error detection, otherwise
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this deviation would be assessed as a gross error

• A larger number of flows should be analyzed to increase the credibility of the results

• A wider time range should be chosen to reduce the detection of random errors and to
simplify the interpretation of the results

• The DR step reduced the variation and yielded datasets that fitted the balance equations
exactly

• The method had potential to be used as a live tool
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Appendices
A

Fig. A .1. Available datasets in Case 2.

Fig. A .2. Available datasets corrected for time shift and bypass flows in Case 2.



B

Fig. B .3. Histogram with a distribution fit of the simulated signals Q1 − Q4 in Simulated
dataset 1 and 2 (the histogram showed the distribution of Q2 without the increasing bias). The
signals had a variance between 0.0065 - 0.0067.
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Fig. B .4. Histogram with a distribution fit of the simulated signalsQ1−Q4 in Simulated dataset
3 (the histogram showed the distribution of Q2 without the increasing bias). The signals had a
variance between 0.013 - 0.015.
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