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Abstract 
System Identification of Irrigation Channels with Overshot and Undershot gates  
Karin Eurén, Department of Information Technology 
 
Water resources in Australia are limited. For a farmer the access to water is crucial and due to 
the dry climate the farmers in Australia can not rely on precipitation. Irrigation is therefore a 
very important part of the farming industry. The Coleambally Irrigation Area is situated in the 
southern parts of New South Wales close to the border of Victoria. The Irrigation Network 
often supplies the irrigation channels with too much water to be sure that the demand of water 
is satisfied. Due to this over supply a great amount of water gets wasted. Design of a better 
control system would be able to reduce the water wastage.  
 
A mathematical model describing the dynamics of the irrigation system can be used as a tool 
for the control system design. The aim of this project was to build a mathematical model with 
the system identification approach. The model should be able to describe the downstream 
water level of a single pool of an irrigation channel which has both undershot and overshot 
gates. A model was built by estimating unknown parameters of a chosen model structure from 
a set of experimental data. The data was collected from an experiment performed on the real 
irrigation system in Coleambally.  
 
The result of the system identification was a first order output error grey box model. The 
model performs well on validation data and may therefore be used for design of a more 
efficient control system. The model gave such good results that it additionally may be used 
for various simulation purposes.  
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Referat 
Systemidentifiering av bevattningskanaler med olika typer av luckor 
Karin Eurén, Institutionen för informationsteknologi, Systemteknik  
  
I Australien är vattenresurserna begränsade. För lantbrukare är tillgängligheten på vatten 
mycket viktig. På grund av det torra klimatet kan inte de Australiensiska bönderna förlita sig 
på nederbörden. Bevattningssystemen är därför en viktig del i jordbrukningsindustrin. 
Bevattningsområdet i Coleambally ligger i södra New South Wales nära gränsen till staten 
Victoria. Bevattningsnätet i Coleambally förser ofta bevattningskanalerna med för mycket 
vatten för att vara säker på att lantbrukarna får den mängd vatten de behöver. På grund av 
denna tillförsel av överskottvatten går stor mängd av vatten förlorad. Design av ett bättre 
reglersystem skulle kunna minska den stora förlusten av vatten. 
 
En matematisk modell beskrivande dynamiken av bevattningssystemet är ett bra redskap vid 
en design av ett bättre reglersystem. Syftet med det här projektet var att genom 
systemidentifiering bygga en matematisk modell av bevattningssystemet. Modellen syftade 
till att beskriva vattennivån i en sträcka av bevattningskanalerna, sträckan i kanalen skulle ha 
två olika typer av luckor, en typ där vattnet strömmar över luckan och en annan typ där 
vattnet strömmar under luckan. En modell byggdes genom att parametrar från en vald 
modellstruktur estimerades från experimentella data. Data samlades under ett experiment som 
utfördes på en bevattningskanal i Coleambally.  
 
Resultatet från systemidentifieringen blev en första ordningens output error grey box modell. 
Modellen visar goda resultat vid validering och bör kunna användas vid design av ett bättre 
reglersystem. Modellen visar så god överensstämmelse med valideringsdata att den även kan 
användas för olika fall av simulering.     
 
Nyckelord: System identifiering, Bevattningskanaler, Grey box modellering, matematisk modellering 
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1 INTRODUCTION 
Australia is the driest continent in the world, but yet it has one of the highest rates of water 
use per capita. This high rate is not sustainable for the future of the environment and the 
future welfare of Australia. Since the country now and then gets hit by the El Niño, it can 
suffer several years of droughts after each other. The time and length of the El Niño are 
difficult to predict. So it is very important that Australia manage its fresh water in the best 
possible way and save water for the future. At this point this is not the case (website 1, 2004). 
 
Even though Australia is so dry, it has a warm climate that is propitious for growing crops. 
For a farmer access to water is crucial, and for obvious reasons the farmers in Australia can 
not only rely on precipitation. In Australia the farming industry is very big, so all together the 
farmers have a high demand of water. In fact of all the water that is used in the country 70-
75% is used for irrigation (website 2, 2004). 
 
It can lead to severe economic consequences for the farmers if water is not delivered on 
demand. To be sure that the demand is satisfied, the irrigation channels often operate with 
more water than necessary. The water losses due to this are approximately 15% (website 3, 
2004). Since there is so much water used for irrigation, huge savings can be made if irrigation 
systems could be operated more restrictive. Not only the farmers but also the whole country 
would benefit from the water savings that could be made. The environmental health is of 
course the most important thing in this discussion, but the incitement to act is as in any other 
industry the economical issue. Water is expensive so waste of water is waste of money.  
 
In many of the irrigation systems the control of water losses is very poor. An improvement of 
the control system can drastically reduce the losses. An earlier study of irrigation channels in 
Australia involving optimization and control, showed that, with a good control system 
installed, water losses in the irrigation channels could be reduced by 50 percent. The cost of 
the engineering infrastructure was paid back in less than a year with the savings made due to 
improved control (Mareels, 2003). Better knowledge about the dynamics of the irrigation 
channels is a helpful tool in the development of a better control system. Another study was 
made on the HMC, Haughton Main Channel, in Queensland. It involved building a 
mathematical model describing the dynamics of a pool in the irrigation system. The model 
was built by system identification methods and gave very good accuracy. Based on this model 
a much more sophisticated control system was built.  

1.1 PROJECT DESCRIPTION 
This project is a study of the Coleambally irrigation system in New South Wales, Australia. 
The CIA, Coleambally Irrigation Area, is very big, it supplies water to 452 farms and covers 
about 79 000 ha. It is situated 650 km south west of Sydney, not far from the border New 
South Wales - Victoria (website 4, 2004). In this irrigation system the problem with water 
losses is significant. The structures of the irrigation channels are similar to those in the HMC 
in Queensland. The basic idea was that, because the method of building a good control system 
with system identification methods gave such good results in the HMC, it could also work for 
the CIA. In the HMC the water flow is controlled by overshot gates (the water flows over the 
gates). In the CIA the water flow is controlled by both overshot and undershot gates (the 
water flows under the gates). The overshot and undershot gates can be compared with gates 
that in literature are commonly called sharp crested weir and sluice gate, see Figure 1.1. 
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undershot gate overshot gate 

 
Figure 1.1 Schematic pictures of side view of an undershot 
gate and an overshot gate, respectively. The arrows represent 
the water flow. 

 
 

1.1.1 Control of the water flow in the CIA 
To be able to deliver the water demanded by the farmers the water levels are controlled to a 
certain set point. The gates control the water level immediate upstream the gates, i.e. the 
control is a simple feedback loop from upstream water level to gate position. This type of 
control makes the irrigation network loose huge amounts of water. The system does not 
consider what happens upstream or downstream a gate site. For example, if the water level at 
one gate site is too high and at the upstream gate site the water level is too low, water will be 
lost in the downstream pool. The pool will not be filled up again very fast because the 
upstream pool wants keep its water. To be able to keep all the set points the network has to be 
manually supervised. A better way of controlling the irrigation network would be to use 
distant downstream control, where a gate site controls the upstream water level of the 
downstream gate site. The water losses would be less with this type of control design, for the 
example above, a chain reaction upstream the irrigation channel would occur. And all the set 
points can eventually be satisfied. Mathematical models of the irrigation channels can 
optimize the control even better. The movements of the gates would consider the property of 
the pool dynamics and earlier gate movements both upstream and downstream in the pool. 

1.1.2 The use of mathematical models in control design 
In control theory mathematical models are used as tools for designing control systems. The 
model gives information about properties of the system such as step responses, time delays, 
time constants, corner frequencies etc. They are important things that need to be considered 
when designing control systems. Another benefit of using models is that when the control 
system is designed it can be tested and tuned on the model instead of the actual system. The 
last step can be very helpful, in many systems it can be expensive to test and tune the control 
parameters on the actual system and sometimes that could even be dangerous.  

1.1.3 The aim of the project 
The aim for this project was to build a mathematical model with system identification 
methods. The model should be able to describe the water level at the downstream end of a 
channel reach in the CIA. The channel reaches of interest is operated with both undershot and 
overshot gates. The project was aimed to finding a good model structure which could describe 
the flow through the undershot gate. (The physics behind the overshot gate was already 
roughly known and had in the HMC study found to give good results.) The model quality 
should at least be so high that it would be suitable as a tool for design of a good control 
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system, and hopefully also suitable for simulation purposes. A simulation model of the system 
should be able to simulate a channel reach with only a starting value of the water levels inside 
the pool and the gate positions for the simulation period. 

1.2 OUTLINE OF THE REPORT  
In Chapter two a guide through the theory of system identification is given. Different ways of 
building models will start the Chapter. In Section 2.2 system identification will be described 
briefly so the reader will get an idea of what system identification is about. Then in Section 
2.3 the system identification procedure will be described in more detail. 
 
In Chapter three a description of the studied system is given that is studied. The site with the 
Coleambally Main Channel will be described in Section 3.1.1-3.1.2 and in Section 3.1.3 the 
design of a single pool. A short guide of the earlier study at the HMC is given in Section 
3.1.4. In Section 3.2 the physical knowledge of the system is found.  
 
The system identification routine for this project is described in Chapter 4, including 
experiment, model structure selection, parameter estimation and model validation. 
 
The result, discussion and conclusion are found in Chapter 5, 6 and 7 respectively. 
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2 THEORY 

2.1 PHYSICAL MODELLING 
Building a mathematical model of a system can be a very difficult and time consuming task. 
A very straightforward method, the most logical one, is to use the knowledge of physical laws 
that is acting on the system. See Section 3.2.1 for an example of physical modelling. This can 
be very complicated with iterative numerical solutions in both space and time. 

2.2 SYSTEM IDENTIFICATION 
System identification is a model building approach that does not interests in what actually 
happens within the system. The system identification engineer sees the system from the 
outside. He/She notice what is put into the system and what comes out from it. With these 
observations he/she moulds his/her model from an already existing model structure. A simple 
example of this technique is to adjust a straight line to a set of data. In this case the model 
structure is the common straight line expression, 
 

mkxxy +=)(  (2.1) 
 
The unknown parameters in equation (2.1) are k, and m. The task of the system identification 
engineer is to estimate the unknown parameters of the chosen model structure, in this case k 
and m.  It is called system identification because the engineer is identifying the system 
dynamics from observing the system behaviour in the way mentioned above. 

2.2.1 Black box modelling  
Within system identification the demand on information about the system is small, which is a 
big advantage. The information needed about the system is the outputs interesting for 
modelling and the inputs affecting the outputs. Further, a set of empirical data from the actual 
system is needed. The data should describe what happens with the system under different 
circumstances. The data is the only information given from the system. In cases where the 
system has more complex dynamics this method could be more efficient. Black box 
modelling is the descriptive name for this approach. The advantage of this approach is that the 
model is concentrating on the essential part of the system and does not bother with the 
complicated mathematics behind the process. Some people call it the engineering approach. 
The disadvantage is that the model is limited by the quality of the data given by the system. 

2.2.2 Grey box modelling 
For some systems, only parts of the dynamics are known and sometimes only parts of the 
dynamics knowledge are worth including in the model. In this case the two methods described 
above can be combined. The name for this type of model is called grey box. Grey box 
modelling is the method used in this project. 

2.3 THE SYSTEM IDENTIFICATION PROCEDURE 
System Identification is a straight forward procedure with a few important steps, see Figure 
2.1. To be able to create a model we need data, as said in the Section above, if data not 
already exist an experiment on the system to obtain data is the first step in the procedure, the 
next step is to choose a model structure suitable for the particular system. In both of these 
steps it is very helpful to use prior information about the system. Whether the system has a 
quick respond or not from input to output could be an example of prior information. When the 
data set is obtained and a model structure is chosen the parameter estimation can begin, the 
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parameters obtained will give the best model within the chosen model structure. The last step 
is the model validation, this step is to check if the model can reproduce the system behaviour 
and thus if the model is good enough for the purpose of the model. If the model satisfy the 
given model criteria the system identification is finished. If it does not satisfy them the next 
step is to go back in the procedure and choose another model order or model structure or, in 
the worst case, do another experiment if it shows that the data is not informative enough. This 
procedure is followed until a satisfying model is obtained. For an overview of the system 
identification procedure see Figure 2.1 (Söderström, Stoica, 1989). 
 
 

Prior knowledge Experiment 

Model structure selection 

Parameter estimation 

Model validation 

Good model 
 

Figure 2.1 The system identification procedure. 

 
 

2.3.1 Prior knowledge 
It is important to use the prior information about the system so the system identification can 
be carried out in the optimal way. Prior information can be used when designing the 
experiment. For example, if the gain of the system is known it is easy to get an idea of how 
much the inputs needs to be changed to get a reasonable change in the output. Prior 
information can also give a hint on which model structure and model order to use. Time and 
money will not be wasted on non suitable model structures. Prior knowledge can help out in 
the analyzing of the result, by giving an idea on what to expect of the results. 

2.3.2 Experiment design 
The data is the weakest link for the system identification model building. The model is based 
on the experimental data and can not predict anything outside the conditions of the collected 
data. Informative data is therefore the key issue when designing an experiment.  
 
The basic idea of the experiment is to attain a change in the output by making changes in the 
inputs. The output is the variable subject for modelling. Prior information is a useful tool to 
find out which variables that are inputs to the system, the needed changes in magnitude and 
frequency of the inputs. In a lot of systems there are many different inputs, but to build a 
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simple model as possible it is important to know which of the inputs that the output is more 
sensitive to (Ljung, 1999). As a complement to the prior information, or if there is no 
information at all it is very common to first perform a step test on the system. The step test 
will give an idea about the system dynamics, and thus how to design the experiment. 
 
A common way to generate the inputs is to create Binary Signals (BS). The inputs changes 
between levels with different frequencies. See Figure 2.2. 
 
 
 
 

 
 

Figure 2.2 An example of a binary signal 

 
 
The model is validated on a separate set of data, the validation set. The model is thus only 
valid for conditions that were present during the data collection of the validation set. If control 
system design is the purpose of the model a wise choice is to perform the experiment during 
conditions that are common for the system (Ljung, 1999). 

2.3.3 Design of input signal and data collection 
The plot in Figure 2.3 gives an example of a bode plot of a system. To capture the dynamics 
of this system the inputs needs to be excited in the frequencies where the system has bends in 
the bode plot (Ljung, 1999). What is important is to see how the system responds for these 
frequencies. For example if the system does not excite the frequencies around ω in Figure 2.3, 
it is not possible to detect the resonance peak in the bode plot. Thus a very important part of 
the system properties will be lost. Further it is often important to excite the system with 
frequencies higher than the corner frequency ωc. This is to be able to identify the slope in the 
bode plot. To exactly know which frequencies the system has to be excited with and what 
levels the inputs needs to jump between is difficult to know. This is often figured out by prior 
knowledge and experience, but also from step test applied to the system (Ljung, Glad, 1991). 
An idea of the time constant and ωc can be given from a step test.  
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Amplitude 

ω
Frequency 

 
Figure 2.3 An example of a bode plot for a system.  

 
 
Assume that the true system can be modelled by a certain model structure then the variance of 
the model becomes smaller if the estimation data set is increasing. It can be compared with a 
normal average. For example, the more data that is included in the search for the average age 
in a population the more precise the calculation of the average age will be. So as a conclusion 
for this Section the more data that can be collected during the experiment and the more 
variation in the data the better for the building of the model. It needs to be said that if the 
model has a bias, the bias will not get smaller the more data that is used in the estimation. 
Another thing that needs to be considered when collecting data is the sampling interval. In 
this project there is not a problem to sample fast enough. But in other situations it is important 
to know how fast the sampling rate needs to be so no information gets lost in the sampling. 
System properties with frequencies higher than the Nyquist frequency (half the sampling 
frequency) are not possible to detect. If the sampling rate is too slow important system 
properties might get lost in the sampling. The model estimation may be sensitive to noise if 
the data is sampled too frequent. So it is important to decide a sampling frequency that is 
suited for the system in question. A rule of thumb is to sample with a rate that is around 10 
times the bandwidth of the system (Ljung, 1999). 
 
For the experiment it is important to consider the limitations of the system. In theory it would 
be best to be able to design the experiment freely without any limitations at all, the more 
information about the system the better. But in reality it may not be allowed or not even 
possible to change the inputs as much as one could wish for. In some systems it could be very 
expensive and/or even dangerous to disturb the system, so often there is a limit on how big the 
changes can be. 
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2.3.4 Model structure selection 
If a system is linear or can be linearised around a particular working point it can be modelled 
with various linear model structures. There are several common model structures that are 
used. They are all versions of the equation (2.2) below.  
 

)(*),()(*),()( teqHtuqGty θθ +=  (2.2) 
 
where y is the output, u is the inputs and e is the white noise. G and H are the transfer 
functions. For system identification purposes it is practical to use a discrete time model since 
the sampling of the collected data is discrete. G and H can be expressed as rational functions 
of polynomials of the shift operator q, see equations. (2.3), and (2.4) 
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where nk is the time delay, nb and nf is the order of the numerator respectively denominator 
of G, for H the orders are nc and nd. bi, fi, ci, di are the parameters in the theta vector θ that is 
to be determined and q is the shift operator. By choosing different values on the parameters 
nb, nc, nd, nf and nk any linear system of interest can be described. There are several different 
models structures of this kind that is commonly used. Two of these model structures, ARX 
(Auto Regression with External input), and OE (Output Error) are described in this part, they 
were the two model structure that were used in this project. They are two special cases of the 
above model structure equation (2.2).  
 
In the ARX model structure, as can be seen in equation (2.5), C = 1 (nc = 0), F = D = A. The 
polynomial A is thus the common denominator for both the inputs and the noise.  
 

)()()()()( tetuqBtyqA +=   (2.5) 
 
 
 
 

B A+

e 
  
     u y 
 
 
 

 

Figure 2.4 A picture of a
input, e is the noise, y is
denominator of the system. 

 
 

 system with ARX m
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As shown in Figure 2.4 the noise comes in early in the process and goes through the same 
dynamics as the inputs.  
 
In the OE model structure H = 1 (nc = nd = 0) see equation (2.6), the noise comes in late in 
the process and basically only effect the output, see Figure 2.5. 
 

)()(
)(
)()( tetu

qF
qBty +=  (2.6) 

 
 
 
 e 
 
     

B/F +
u y  

 
 
 

Figure 2.5 A picture of a system with OE model structure, u is the input, 
e is the noise, y is the output. B and F are the numerator and denominator of 
the system.  

 
 
For the ARX structure the best prediction of y is given in equation (2.7). From equation (2.5) 
the optimal prediction can be found by neglecting the noise. 
 

)1(...)1()()(...)2()1()(ˆ 2121 +−−++−−+−+−−−−−−−= nbnktubnktubnktubnatyatyatyaty nbnaARX

                                                                                                                   (2.7) 
 
In the OE structure the noise can not be neglected in the same way. Equation 2.6 can be 
rewritten as follows. 
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The best predictor of the expression above is when the noise e(t) is neglected, but there is still 
old noise e(t-1), e(t-2)… etc that makes the expression difficult to predict. To be able to 
predict y(t) the old noises are considered by having old predicted values in the predictor 
instead of measured. This is explained with a longer proof in (Söderström, Stoica, 1989). The 
optimal predictor for the OE model structure is given in equation (2.8) 
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)1(...)1()()(ˆ...)2(ˆ)1(ˆ)(ˆ 2121 +−−++−−+−+−−−−−−−= nbnktubnktubnktubnatyftyftyfty nbnfOE

 (2.8) 
 
where an are elements in the A vector and consequently bn and fn are the elements in B and F. 
For the A, B and F vector see equation (2.5) and (2.6) and Figures 2.4 and 2.5 y is the 
measured data,  is the predicted values and e is the noice (Ljung and Glad,1991). ŷ
 
ARX is sensitive to high frequency properties and the OE structure is more sensitive to low 
frequencies. ARX can give good results in lower frequency areas if both the inputs and the 
outputs are filtered through a low pass filter. If the filter is the same for both the inputs and 
outputs and the system is linear there will be no change in the input-output relation. This is 
also the case for the OE model structure. If a high pass filter is applied, the OE can give better 
results in the higher frequency areas. In the case of modelling an irrigation channel reach, 
which has the interesting dynamics, for control purposes, in the low frequency area (changes 
due to dynamic properties are slow) it is more interesting with models that make more 
accurate models in the low frequency area (Ljung,1999). 

2.3.5 Choice of model order 
When the model structure is chosen an order to the model has to be determined. It is very 
important that a correct model order is chosen. A too low model order will not be able to 
describe the true dynamics. But on the other hand the model can be worse if too many 
parameters are included. The model may try to describe the noise that has nothing to do with 
the dynamics of the system. Too many parameters will only incorporate more uncertainty to 
the model. If there is knowledge about the system behaviour it can be an easy task to Figure 
out what model order that would give a good result, in other situations there are tools that can 
help to see if the model order chosen is the right one, see literature (Ljung, Glad, 1991) or 
(Ljung, 1999). 

2.3.6 Grey box model structure.  
In the case of this project there is prior knowledge that can be used for the model structure 
selection. To incorporate the knowledge into the model, the knowledge needs to be combined 
with the theory about model structure selection above. It will be better described how this was 
done in the Section about “model structure selection” in Chapter 4. 

2.3.7 Parameter estimation 
Within system identification there are different methods to use, but the method that is seen as 
the basic system identification approach is the prediction error method. The theory of 
Prediction error method is quite simple. The basic idea is to minimize the function 
V(θ), which is a function of the squared error between the measured output and the 
predicted/simulated output from the model. The θ vector contains the estimated parameters. 
See equation (2.9) and (2.10) 
 

∑
=

=
N

t

t
N

V
1

2 ,)),((1)( θεθ l  (2.9)  

( ),(ˆ)()(),( )θθε tytyqLt −=  (2.10) 
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where (·) is a scalar valued function, L(q) is a filter, y(t) measured output, l ),(ˆ θty the 
predicted output and N is the number of measurement used in the estimation (Ljung,1999). 
This method is an optimization problem that within the chosen model structure finds the 
model that gives the smallest average error between the model output and the measured 
output. Equation (2.9) needs to be minimized to find the θ vector that satisfies this 
optimization. 
 
For some model structures it can be very straight forward and simple to find the θ  vector with 
an analytical solution. Other model structures are more complicated and need an iterative 
searching method to find the optimal solution. Since ARX and OE are the model structures 
mentioned above, the methods for these two model structures are described below 
 
In the case for the ARX model structure the minimization of (2.9) can be done analytically. 
The only thing that is needed for the parameter estimation is the measured data. The ARX-
model structure can be written as a linear function. The ARX model from equation (2.5) can 
be written as 
 

)()1(...)1()()(...)1()( 211 temtubtubtubntyatyaty mn +−−+−+=−+−+  (2.11) 
 
The parameters a and b can be combined into a θ vector and y(t) and u(t) into )(tϕ . If the e(t) 
is neglected the ARX model can be written as equation (2.12)  
 

θϕ )()( tty =  (2.12) 
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where y is the output, ϕ  is the vector with old y and inputs for the whole data set and θ is the 
unknown parameters. From this expression and the optimization conditions in expression 
(2.9) and (2.10) θ can be solved as follows. 
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where  is the estimate of the unknown parameters,θ̂ )(tϕ  is the input vector for t and y(t) is 
the output, For the theory behind this expression see literature (Söderström, Stoica, 1989).  
  
The OE model structure is using the value from the last prediction step to predict the next 
step. It is not possible to find an analytical expression for this optimisation problem. Finding 
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the θ vector is therefore more complex than for the ARX case. The optimization is solved by 
using an iterative search scheme. For every step in the search for θ the prediction for the 
estimation set is calculated. This can be very time consuming, but with a routine in a suitable 
programming language this can be made more efficient. The search starts with a given starting 
value for θ. The V( ) is calculated and compared with the previous V( ). When the 
minimum V( ) is found the search for θ stops. There are different searching methods with 
different searching properties. The method used in this project is the Levenberg-Marquardt 
searching method. This method is supposed to be able to handle the search even though the 
model is over parameterized or if the data is not informative enough. The numerical search 
results in a minimum of V( ). If this is a global or local minimum is difficult to know. If it is 
a local minimum it means that it is not the best model in the particular model structure. If the 
model shows satisfying results in the validation it shows that the model is good for its purpose 
even though it is not the best one (Ljung, 1999).  

θ̂ θ̂
θ̂

θ̂

2.3.8 Model validation 
To be able to judge the model quality there is a need for a measurement that can show how 
good the models are. The model validation is the tool for such a measurement. 
 
When the unknown parameters are estimated the best model within that model structure, and 
on that particular estimation set, is built. The model is adapted to the estimation data set. The 
V( ) does not give a true judgement of how good the model is to describe the system. It gives 
a very good judgement on how good it is to model the estimation set. But the model could 
have tried to describe the noise of that particular set. What happens when it tries to model the 
same system but with another set of noise? The purpose of the validation is to predict/simulate 
another data set and compare it with the measured values. To evaluate how well the model 
can describe the validation data set, V( ) is calculated, see equation (2.9) and (2.10). V( ) is 
never used as the only factor to evaluate a model. A common way to complement it is to study 
the plot of the prediction/simulation and the measured data (Ljung, Glad, 1991). 

θ̂

θ̂ θ̂

 
The use of the model decides whether the model is good enough or not. The demand on 
accuracy of the model can vary depending on the area of use. A model used for control does 
not demand as high accuracy as a model aimed for simulation. As long as the main trend in 
the data can be described the controller can easily handle the static error by having an 
integrating property. And by having low gain in the higher frequency area it does not matter 
too much if the model does not capture the high frequency properties. For simulation purposes 
there is a higher demand on model accuracy. Of course it depends on why the simulation is 
made how good the model has to be.  

2.3.9 Model validity 
When it comes to using the model for practical purposes, it is very important to know for 
what conditions the model is valid. The model is only valid for the conditions which were 
during the collections of the validation set. For example, the model is valid if the inputs are 
changed in similar manners and size as the validation set, and if the outputs are moving in the 
same range as in the validation set. Outside of these conditions the model is not valid at all 
and nothing can be said about the model performance (Ljung, 1999). 
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3 INFORMATION ABOUT THE IRRIGATION SYSTEM 
As said earlier in this report, the prior knowledge of the system is an important part of the 
system identification. The known parts of the system need to be looked into and judged 
whether or not it is useful for the model building. In this Chapter the prior knowledge of the 
system is given, starting with the site description and earlier studies and ending with the 
physical knowledge.  

3.1 SYSTEM DESCRIPTION 

3.1.1 History of the Area 
As a result of the Snowy Mountain Hydro Electrical Scheme, diverted water could be used for 
other purposes than hydro electric power. One idea was to divert the water for irrigation 
purposes. That was the main reason why the Coleambally Irrigation Area (CIA) was formed. 
The CIA irrigates an area of about 79 000 ha which is all together 452 farms. The Small town 
of Coleambally was built in the 1960’s as a consequence of the irrigated agriculture in the 
area. The size of the town is about 1200 inhabitants (website 4, 2004). 

3.1.2 Site description 
The CIA is an open channel system, where the water flows in contact with the atmosphere. As 
described above the CIA is a very big irrigation system. The part of the system that was 
studied in this project was the Coleambally Main Channel (CMC). The Main Channel consists 
of a number of pools and the gate sites that separates the pools. For a schematic picture see 
Figure 3.1. 
 
 

Overshot 
Undershot  

Horticultural            Coly 3                                  Morundah                                          Grants                           Prickley 

Main channel 

 
Figure 3.1 A top view of the Coleambally Main Channel Where Horticultural, Coly 3, 
Morundah, Grants and Prickley are the gate sites, the grey bars are representing 
undershot gates and the bars with dots are representing overshot gates. 

 
 
The studied channel reach of the CMC starts with Horticultural gate site, with undershot 
gates, and ends with Prickley gate site with overshot gates. In between there are Coly 3, 

Direction of flow 
off takes 

Gates 
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overshot, Morundah, overshot, Grants, undershot. At each gate sites there are different 
number of gates. For an overview see Table 3.1 
 

Table 3.1 The number of gates at each gate site. 

Gate site Horticult. Coly 3 Morundah Grants Prickley 
Type of gates Undershot Overshot Overshot Undershot Overshot 
Number of gates 4 6 6 4 5 
 
In the rest of the report the gate sites will be referred to as the first letter of their names. For 
examples, Horticultural will be referred to as H. 
 
A pool is considered as the channel reach between two gate sites. There are differences in the 
lengths of these pools. H-C is about 2.8 km, M-G about 5.4 km and G-P about 5-6 km.  

3.1.3 Pool description, 
Of the above described pools, the H-C and M-G were the ones used in this project. It is 
because they both have undershot and overshot gates, which was the main criterion for being 
studied in this project, see the aim of the project in Section 1.1. For H-C there are 4 undershot 
gates at the upstream end of the pool and 6 undershot gates at the downstream end. For the M-
G it is the other way around. From each pool there are off takes. The off takes are 
considerable smaller than the flow from and to the pool. 

3.1.4 Earlier studies 
Experience from earlier work in the same field of study was a very useful tool during the 
project. The work used was “system identification of an open water channel”, (Weyer 2001), 
performed on the Haughton Main Channel (HMC) in Queensland, Australia. The HMC have 
similar design to the CIA. The difference is that the HMC is a smaller channel and it has only 
overshot gates and only maximum two gates in parallel. Weyers work gave very satisfying 
results. He managed to build a first and second order model that captured the trends in the 
data very well. With a third order model he could even capture the wave dynamics which is a 
high frequency property in the HMC. The appearance of wave dynamics was very clear when 
looking at the experiment data (Weyer, 2001). The physical theory about the system that 
Weyer used, is described in Section 3.2.2. Since the HMC and CIA have similar design, the 
same theory is used in this project. 

3.2 PHYSICAL KNOWLEDGE 
The pools that are studied in this project have the design as in Figure 3.2. The Figure shows 
the H-C pool where there are undershot gates upstream and overshot gates downstream.  
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yds,u yus,d

Figure 3.2 A side view of a single pool in the irrigation channel, where the 
inflow is controlled by an undershot gate and the outflow is controlled by an 
overshot gate. yds,u is downstream water level of the upstream end gate site. 
yus,d is the upstream water level of the downstream end gate site. The 
subscripts ds,u stands for downstream at upstream end.  

 
 

3.2.1 St Venant equations 
Below the physical knowledge about the system is described. This is the prior knowledge 
used in the model structure selection and experiment design. 
 
In Section 2.1 it was said that a model could be built from physical knowledge. In this project 
the dynamics of an irrigation pool of this kind can be described by the Saint Venant equations. 
The Saint Venant equations are based on the conservation laws of mass and momentum 
(Baume et al.,1998). With various assumptions and simplifications the one dimensional flow 
in an open channel can be described by equations (3.1) and (3.2). 
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where A is the cross Sectional area of the channel, B is the width of the water surface, Q is the 
flow, g is the gravity constant, Sf is the friction slope, which is a non linear function of the 
channel properties, and S is the mean bed slope. These equations are partial differential 
equation and quite numerically demanding to simulate. The simulations are made by iterative 
numerical calculations in both space and time, see Figure 3.3.  
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time 

space 

 
Figure 3.3 A mental picture of physical model iterations 
over space and time. The dots represents numerical solutions 
that are solved first in space and then for every time step.  

 
 
To build this kind of model, many things about the system have to be known. It is not only the 
physical laws but also properties of the pool that can be difficult to determine. One example in 
this case is the friction slope. To start the simulations, values of a whole profile in space is 
needed. 
 
This is however a time consuming and possibly an unnecessary task in this project. The 
interesting output is the downstream water level of the pool, and not all the information about 
the water profile upstream is needed. There is another way of describing the physics of the 
system in a simpler way, which is described below.  

3.2.2 Integrator 
A simple way of viewing an irrigation pool is to regard it as an integrator. A simple mass 
balance, volume of water that goes into the pool minus the volume that goes out from the pool 
is the change of volume inside the pool during a certain period of time. If it is assumed that 
the cross Sectional area of the pool is constant and increases linearly with height, the change 
in water level is proportional to the change in volume, see equation (3.3). 
 

)( outin QQK
dt
dy

−=  (3.3) 

 
where y is the water level, K is a constant, Qin and Qout are the inflow and outflow.    
   

3.2.3 The flow through the undershot and overshot gates 
The basic theories of overshot and under shot gates are sketched in Figure 3.4. In the 
following Section the physical theory of this is described in more detail. 
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Figure 3.4 a) A detailed picture of an overshot gate, go is the gate position (subscript o 
stands for overshot gate), h is the head over gate, yus is the upstream water level and yds is 
the downstream water level. b) A detailed picture of an undershot gate, gu is the gate 
opening, yus is the upstream water level and yds is the downstream water level. 

 
 
The flow over an overshot gate can be described by the expression in equation (3.4) 
 

2/3
12 hgCLQ =  (3.4) 

 
where C is a constant, L is the width of the gate, g is the gravitation constant and h1 is the 
head over gate which can be written as upstream water level minus gate position (Bos, 1976) 
and (Fox et al, 1994). This expression was used by Weyer in the HMC study. This expression 
is valid considered that the gate is in free flow. If a gate is in free flow the downstream water 
level of that gate is lower than the gate position. In the CIA there is a possibility that drowned 
flow can occur, the downstream water level of a gate is above the gate position. When 
drowned flow occur the flow properties changes and thus the flow function, see equation (3.5) 
which is an empirical function (Webber, 1971) 
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where Q is the flow through the gate, Q1 is the flow expression for the gate in free flow 
equation (3.4), h1 is the head over gate, distance between upstream water level and gate 
position. h2 is the downstream head, distance between downstream water level and gate 
position. The total flow expression (3.6) is as follows 
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With a closer look at this function it can be seen that the function is continuous. When the 
immediate downstream water level equals the gate position the fraction h2/h1 becomes zero. 
The drowned flow expression becomes the free flow expression (Webber, 1971). In literature 
there are different ways of describing drowned flow. It has been found for a particular channel 
that the above expression gives the best results in modeling drowned water flow. This was 
discovered in a fourth year project, by Gordon Chessum, supervised by Weyer at the 
Department of Elecrtrical and Electronic Engineering, Melbourne University. Therefore 
equation (3.5) was used in this project to model drowned flow. 
 
In the CIA the undershot gates are submerged. It means that the immediate downstream water 
level, yds in Figure 3.4 b, is above the gate position. The flow under the undershot gate 
depends not only on the upstream water level and gate position, but also on the downstream 
water level. From the Bernoulli equation, the following expression can be found in literature, 
 

)(2 dsusu yygCLgQ −=  (3.7) 
 
where C is a discharge coefficient, L is the width of the gate, gu is the gate opening, g is the 
gravitational force, yus is the upstream water level and yds is the downstream (Baume, 1998). 
But the literature do not totally agree, for example in (Fox, 1994) it says that it is impossible 
to analyze flow through an undershot gate with submerged flow. One particular expression 
(3.8) may be used with an appropriate value of the discharge coefficient.   
 

)(2 usu ygCLgQ =  (3.8) 
 
The discharge coefficient C depends on the ratio (gate position)/(upstream water level). This 
means that C changes with conditions (Rouse, 1961). That is a hint of that the system behaves 
different depending on conditions and that a system identification model shall be used very 
carefully within the range of the models validity. The expression (3.7) above was the one used 
in this project. Since it was mentioned in a paper about modeling and control of open channel 
irrigation systems it seemed more suitable to start with (Baume et al., 1998). 
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4 SYSTEM IDENTIFICATION PROCEDURE APPLIED ON THE CIA 
In this Chapter it is described how the system identification procedure was applied to the 
irrigation system.  

4.1 THE EXPERIMENT 
The experiment design is an important part of the system identification and it is essential that 
the experiment is well planned so the aim of the experiment is fulfilled.  
 
The experiment was conducted, at the Rubicon office in Melbourne, over a period of 4 days, 
starting 2/2 2004 and ending 5/2 2004. The signals were sent via radio network from a remote 
desktop to the gates in the field. 
 
The aim of the experiment was to get an informative data set where there is a significant 
variation in water level with a sample rate that also captures the higher frequency properties 
of the system. The plan for the experiment was to first put a step to the system to get an idea 
of the system properties such as time delay, time constant, gain etc. With this information a 
BS (Binary Signal) was created and then later applied to the system as the exciting signals. 
 
The sampling period was close to every second minute. Every gate site from Horticultural to 
Prickley was sampled with the mentioned sampling rate. The properties that were sampled 
were the upstream water level, downstream water level, gate positions and flow. All the gate 
sites were manually sampled at a rate of one in every 60-75 minutes. This was done for later 
comparison with the automatically sampled data.  

4.1.1 Limitations of the experiment 
Disturbances can have severe affects on the irrigation system. The water delivery to the 
farmers can be considerable lowered if the water levels are sunken too much for a long time. 
It can have a large negative effect on the crop production if the water demand at the time is 
high. On the other hand, if the water level rises too high, there will be water wasted. This is 
not a minor problem. The cost of water per Ml per day is ~$100 (Weyer, 2004). It is easy 
math to Figure out that the cost of the water wasted will not be small if the gate change is a 
couple of centimetres too big. 1mm gate change per gate gives a flow change of 1 Ml per day 
(Rubicon, 2004). Fortunately there was not a big demand of water at the time of the 
experiment so no particular lower bound for the water levels were set. There were however a 
couple of other limitations that had to be considered: 
  

• The water level change should not vary much more than 10 cm. 
• All the water levels had upper limits that they should not be raised above, see Table 

4.1  
• Only the two middle gates at each gate site were allowed to be manipulated.  
• There were only four days to conduct the whole experiment procedure including the 

step test.  
• Experiments could only be conducted during office hours. That constrains the 

experiment to be around 10 hours for one continuous experiment (1 day).  
• The experiment had to be monitored the whole time. 
• Information sent via the radio network from the irrigation channel was limited. 
• The input signals were limited to be gate positions. 
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Table 4.1 The upper limits 
of the water levels in the 
experiment at each gate site. 

Gate site Upper limit 
[m] 

H 2.12 
C 2.10 
M 2.05 
G 2.02 
P 2.15 

 

4.1.2 The step test 
Day one was used to get an idea of how much the gates could be opened to get a reasonable 
step within the limitations above. On day two the step test was applied to the system. The 
gates were moved at gate sites H and M, inducing a step on the water levels upstream C and 
G. The step in gate positions was 200 mm. For the overshot gates there are nonlinear 
dynamics associated with the transfer function between gate position and water head (distance 
between upstream water level and gate position) the gate positions were changed during the 
step test to keep the step in head constant. The system is linear from flow to water level, 
constant head would give a good linear step response for the overshot gate. It is not true for 
the undershot gate, constant head over gate would not give a linear step response. The head 
over gate was accidentally held constant on the undershot gates at H. During the step test, the 
closest gate sites were held constant so the step test would be as undisturbed as possible.  

4.1.3 The results from the step test  
Day one gave a hint on how big the gate openings could be for a reasonable step response. As 
said earlier the step in gate positions was chosen to be 200 mm. The step response turned out 
to be good but small. The system could have handled a slightly bigger step. The step gave 
information about the time delays of the different pools. In Figure 4.1 the step tests can be 
viewed, the time delay is the time between the step in input and the beginning of the step in 
output. The estimated time delays are shown in Table 4.2. 
 

Table 4.2 Time delays found 
in the experiment. 

Pool Time delay 
[min] 

H-C ~10 
M-G ~19 

 
 
The time constants for the different pools are estimated from the plots as the time from the 
start of the step until steady state, divided by five. The time constant is thus a measurement on 
how fast the system responds to a change in the inputs. 
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Figure 4.1 Step tests in the water levels at the downstream end of the H-C pool and M-G 
pool. The step in gate positions was 200mm. The gate positions are not in the same scale as 
the y-axis. The arrows represent the estimated steady state of the water level. 

 
 
The time constants are represented in Table 4.3. It is worth mentioning that the determination 
of the time constants was not a simple task because the step was rather small compared to the 
noise. In Figure 4.1 arrows are representing where steady state was estimated to be.  
 

Table 4.3 Time constants of 
the experiment 

Pool Time constant 
[min] 

H-C 68 
M-G 120 

 
 
The size of the step responses are represented in Table 4.4. The step for the longer pool M-G 
was much bigger than for the shorter pool H-C. It was expected to get a bigger step in the 
shorter pool. An explanation to that could be that there was little time to wait for steady state 
before applying the step. Before the steps were applied gates had been moved in the direction 
of the step for the M-G pool and in the opposite direction for the H-C pool.  
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Table 4.4 Step response sizes 
of the experiment. 

Pool Step response 
[cm] 

H-C 3.5 
M-G 9 

 
 

4.1.4 The Binary Signal 
The BS was designed as signals jumping between two levels in gate positions. The gate 
positions are the inputs that are available for control. It is therefore interesting to know how 
the system behaves when a change occur in the gate positions. The energy was chosen to be 
close to the corner frequency, ωc, very low frequencies were intentionally not chosen 
considering the limitation of time. It was important to get as much information as possible 
from the short time available. The signal was designed so that a significant but not too big 
variation in water level could occur and that the amount of water into the pools would be 
roughly the same as the amount water out from the pool averaged over the experiment. The 
time constants from the step test were used to design the frequencies of the binary signals. 
The time constants were 68 min and 120 min for the different pools. The Signals were chosen 
to change levels in intervals of 30 min to 320 min for the H-C pool, the pool gets information 
about the system around the bends in the bode plot, close to the corner frequency. For the M-
G pool the intervals were chosen to be longer due to the longer time constant, between 60min 
to 200 min. The levels of which the gates were jumping between were ±100 mm around set 
point for the first BS experiment. Set points are the gate positions which were during the start 
of the experiment. The levels were chosen with the information from the step test. Because of 
the limitations of the experiment rather small levels was the first choice so the limitations not 
were exceeded. It showed that the levels could be increased for three of the gate sites to get a 
more informative result for the last day of experiment. So the levels for day 4 were changed 
for H and G to set point ±150 mm. The signals that were applied to the system can be studied 
in Figures 4.2-4.9, together with the system response to these signals. 
 
To perform the experiments within the limitations, the system had to be adjusted before 
applying any signal. Water was let out from the two most downstream pools to lower the 
water levels so it was possible to stay within the limitation boundaries.  

4.1.5 The result from the experiment 
In Table 4.5 the range of the water levels from the experiment is represented 
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Table 4.5  The largest water level differences for the two days of experiment. DSwl.diff. 
stands for down stream water level difference and USwl.diff. stands for Upstream water level 
difference. These water levels refer to a specific gate site. Upstream and downstream the 
particular gate site.  

 
Gate site 

DSwl.diff. 
day 1 
[cm] 

USwl.diff. 
day 1 
[cm] 

DSwl.diff. 
day 2 
[cm] 

USwl.diff. 
day 2 
[cm] 

H 12 8 13 15 
C 6 9 12 9 
M 8 17 11 13 
G 18 14 15 13 

 
In Table 4.6 the gate positions for all the gates are represented for both the binary signal 
experiments and for all the gate sites. 
  
 
Table 4.6 The gate positions of the experiment of the different gates at each gate site. The 
gate position is the distance between the bottom of the channel to the opening of the gate. For 
the two middle gates the values for the two levels of the binary signals are given. 

 H C M G 
Data 
set 

BS 1 
[mm] 

BS2 
[mm] 

BS1 [mm] BS2 [mm] BS1 
[mm] 

BS2 
[mm]  

BS1 
[mm] 

BS2 
[mm] 

Gp1 153 153 1450 1450 2010 2010 60 160 
Gp2 980/1180 940/1235 1540 1540 1670 1570 665/865 540/735
Gp3 980/1180 940/1235 1400/1200 1375/1075 975/775 995/795 665/865 540/740
Gp4 103 103 1390/1190 1375/1075 970/770 1015/810 8 8 
Gp5   1248 1135 1710 1710   
GP6   1780 1780 1710 1610   
 
 
The result of the experiment is given in Figure 4.2-4.9. In the Figures the upstream water level 
and the gate positions are moved in the plots to get a better view of the information. The data 
is still plotted in the same scale. In the Figure text it is given how much they are moved. For 
example in Figure 4.2 the upstream water level is moved -0.4 m, it means that the water level 
is not actually starting at 1.6 m. Its real water level is 1.6+0.4 which is 2.0 m.  
 
In Figures 4.2 and 4.3 there are arrows pointing at certain events in the experiment. These are 
just to show how the output behaves depending on how the BS is designed. For example in 
Figure 4.2, when the gate positions for the undershot gates increase (1) at H the flow through 
the gates increases and the water level upstream the gate decreases (2). After the time delay of 
the pool the upstream water level at C starts to increase due to the increased flow into the pool 
(3) in Figure 4.3. About an hour later, also in Figure 4.3, the gate positions increases at C. 
This means that the overshot gates rises and the outflow decreases (4). The upstream water 
level at C is increasing even more due to that (5). Arrow number 6 in Figure 4.3 is pointing at 
a time in the experiment where the gate is in free flow, the water level is below the gate 
positions. This shows that it is important to consider both free flow and drowned flow when 
modelling this irrigation channel. 
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2

1

Figure 4.2 Experiment results from H day1. Dotted line: upstream water level, dashed line: 
downstream water level, solid lines: gate positions. In the plot upstream level is moved -0.4 m 
and gate pos. are moved +0.2m 

 

 

5

3 
6

4

Figure 4.3 Experiment results from C day1. Dotted line: upstream water level, dashed line: 
downstream water level, solid lines: gate positions. In the plot only the upstream level is 
moved -0.55 m. This means that it is easy to see whether the flow is drowned or not by 
comparing the downstream water level with the gate positions 
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Figure 4.4 Experiment results from H day2. Dotted line: upstream water level, dashed line: 
downstream water level, solid lines: gate positions. In the plot upstream level is moved -0.4 m 
and gate pos. are moved 0.2m 

 

 
Figure 4.5 Experiment results from C day2. Dotted line: upstream water level, dashed line: 
downstream water level, solid lines: gate positions. In the plot upstream level is moved -0.55 
m. This means that it is easy to see whether the flow is drowned or not by comparing the 
downstream water level with the gate positions.   
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Figure 4.6 Experiment results from M day1. Dotted line: upstream water level, dashed line: 
downstream water level, solid lines: gate positions. In the plot upstream level is moved -0.4 m 
and gate pos. are moved 0.38m 
 
 

 
Figure 4.7 Experiment results from G day1. Dotted line: upstream water level, dashed line: 
downstream water level, solid lines: gate positions. In the plot upstream level is moved -0.8m. 
This means that it is easy to see whether the flow is drowned or not by comparing the 
downstream water level with the gate positions.   
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Figure 4.8 Experiment results from M day2. Dotted line: upstream water level, dashed line: 
downstream water level, solid lines: gate positions. In the plot upstream level is moved -0.4 m 
and gate pos. are moved 0.38m 

 

 
Figure 4.9 Experiment results from G day1. Dotted line: upstream water level, dashed line: 
downstream water level, solid lines: gate positions. In the plot upstream level is moved -0.8m. 
This means that it is easy to see whether the flow is drowned or not by comparing the 
downstream water level with the gate positions.   
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4.1.6 Discussions of the experiment results 
In Figure 4.3 and 4.5 (C BS 1 and C BS 2, Binary Signals) gate positions and downstream 
water levels are not moved from their original values of the levels in the plots. It is easy to see 
where the flow is drowned or not. Where the gate positions are below the down stream water 
level the flow is drowned. The other gates which are not changed in the experiment are much 
less open and thus in free flow during the whole experiment. It is the same for the other 
overshot gate, M, Figure 4.6 and 4.8. But the difference in this case is that the flow through 
the two changed gates in the middle are drowned during the whole experiment. The gates on 
the side that are not changed are not included in the plots see Table 4.6. 
 
When gate positions are lowered for the undershot gates, H and G, it means that the flow 
decreases, see Figure 3.4. It is the opposite for the overshot gates, C and M, where a lowered 
gate position gives increased flow. Thus the water level upstream an undershot gate will 
decrease when the gate position is raised and the water level downstream will increase. The 
water level upstream an overshot gate will increase if the gate position is raised and 
downstream level will decrease and vice versa. 
 
Take the example H-C, where undershot is upstream and overshot is downstream. The water 
level at the downstream end of pool will increase when the upstream gate positions are raised 
but first after the time delay of the pool, and lowered when the downstream gate positions are 
lowered. To get a good picture of what happens in a pool during the experiment, study Figure 
4.2 and 4.3 together as well as Figures (4.4, 4.5), (4.6, 4.7) and (4.8, 4.9) 

4.1.7 Data processing 
The data was loaded in to Matlab for analyzing. The data set was examined for outliers. No 
outliers were found in the interesting parts of the data set. It was also resampled, to get the 
data evenly distributed over time, with a sample rate of every second minute. A function in 
matlab, “INTERPL”, interpolates between the data points and resamples with desired sample 
rate. 
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4.2 MODEL STRUCTURE SELECTION 
With the rule Try Simple Thing First (Ljung, 1991) in mind a first order ARX model structure 
was first used.  
 
The equation below, which is equation (3.1) from Chapter 3, is a very simple expression of 
the water level change.   
 

)( outin QQK
dt
dy

−=  (4.1) 

 
From that expression an ARX model structure can be built.  
 

)()()()1(ˆ ,, tKQtKQtyty outindusdus −−+=+ τ  (4.2) 
 
where yus,d(t+1) is the water level at time t+1, yus,d(t) is the level at time t (the index us,d 
stands for upstream water level at downstream end of pool), τ is the time delay for the inflow 
to the water level y. Q can be replaced by either of the expressions (3.6) or (3.7), describing 
the flows through the different types of gates. If the pool H-C is going to be modelled the 
inflow shall be described by equation (3.7) (undershot gate) from Chapter 3, and vice versa 
for the M-G pool. K and the constants for the flow equations are combined together to the two 
constants c1 and c2. See equation (4.3) for the example when H-C is modelled. 
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 (4.3) 
 
where the index us,u and  ds,u stand for upstream and downstream water level at upstream, 
end of pool. gu and go are the gate openings for the undershot and overshot gates respectively. 
Equation (4.3) describes only the situation when the overshot gates are in free flow. In the 
actual model the expression has to alternate between the two cases whenever the gates 
changes in flow condition.  
 
At each gate site there is more than one gate and the gates are not always moved together. The 
gates at one gate site have the same size and design. The total volume of water that flows 
through a gate site is the sum of the water that flows over the gates together. Equation (4.3) 
can be expanded as follows, 
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 (4.4) 
 
where n is number of gates and the gate openings for the different gates are shown separately. 
For the undershot case the gates openings can be taken out from the flow equation and 
multiplied outside as in equation (4.4).  
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The ARX predictor is estimated to predict the system as a one step ahead prediction. The 
ARX model structure needs the measured value of the last step in the prediction, see equation 
(4.4). It is a useful model structure but if the model is meant for simulation it is better to build 
an OE model. And also in this case, where the important dynamics are in the low frequency 
area, it may be beneficial to use the OE model structure. In fact in this project the ARX model 
was used to give a starting value for the search of the parameters of the OE model and also to 
give a hint if the grey box model structure at all was working for this system, (Weyer, 2004). 
 
The predictor for the OE case is given by  
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 (4.5) 
 
The OE model structure makes it possible to simulate the water level for unlimited time, but 
at the same time it makes the parameter estimation more complex. It is not possible to get an 
analytical solution, iterative search is required, see Section 2.3.7.  

4.2.1 The OE Simulation model of the downstream water level  
In both cases, H-C and M-G, the immediate downstream level in the upstream part of the pool 
is needed to calculate the inflow of water to the pool. It is a paradox to use the OE model for 
simulation of the downstream end water level if the model needs measured values of the 
upstream end water level, . This problem can only be solved by building another model, 
describing the immediate downstream water level at the upstream end. In equation (4.6) 
below the upstream end water level is replaced by the simulated upstream end water level. For 
the H-C pool the inflow to the pool is dependent on the immediate downstream water level of 
H because H is an undershot gate. For the M-G pool the water inflow is dependent on the 
immediate downstream water level of M if the M gates are in drowned flow.  

udsy ,ˆ
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 (4.6) 
 
To simulate the downstream end water level a combination of the two models is needed, one 
describing the upstream end water level and the other describing the downstream end water 
level. The water level simulated in one model should be used as a water level in the other 
model simulating the next value for the first water level. For a descriptive picture see Figure 
4.9.  
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Figure 4.9 A schematic picture of the combined model for describing the downstream 
end water level. Both the models need the values of the output of the other model after a 
time delay specific to the models. 

 
 
The model used for the upstream end water level was built based on the same theory as the 
downstream end water level model. The downstream and the upstream water level of the pool 
are both measurements of the volume change in the pool, (which is the theory base of the 
models, see Section 3.2.2). The difference between the models is that the time delay from 
inflow in the upstream end water level model is zero and for the outflow it is a time delay as 
for the inflow in the opposite model.  
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Equation (4.6) and (4.7) will alternate in calculating the water levels for the two models. The 
values calculated for one model will directly be put in the other model for a water level that is 
needed in the first model. 

4.3 PARAMETER ESTIMATION AND MODEL VALIDATION 
The data set was split into two sets. The first binary signal experiment (BS1) was chosen as 
the first data set and the second binary signal experiment (BS2) as the second data set. The 
split was necessary for validation of the model.  
 
Even though it is not much to say about the actual parameter estimation it is a big and time 
consuming task. The parameter estimation included writing Matlab routines. For the ARX 
model the analytical solution was calculated, see equation 2.14 in Section 2.3.7, and for the 
OE model the iterative search for θ was performed. The Matlab command “LSQNONLIN” 
was used in the search for the optimal solution. “LSQNONLIN” is using the Levenberg 

Modelled data 

Downstream 
model

Upstream 
model
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Marquard searching method, see the theory Section 2.3.7. The two models for upstream and 
downstream end of pool were estimated together. The optimization found the best pair of 
models that gave the total minimum error for both water levels. The  vector that was 
estimated 
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is the  that minimizes the total error for both the models, where cθ̂ 1, c2 are the parameters for 
the downstream end water level model and c3, c4 are the parameters for the upstream end 
water level model. 
 
Models were estimated from both data set 1, BS1, and data set two, BS2 to get as much 
information as possible from the two data sets. It is a way of analysing the model quality, to 
see if the model can be reproduced by a new set of data. It will also give a hint on the 
sensitivity of the model. The models were evaluated both against its estimation set and its 
validation set. As the result of the parameter estimation and the model validation the 
estimated parameters, the criterion function and plots were given. The plots are showing how 
well the model can simulate the measured data. The criterion function used in the evaluation 
was the basic version of the prediction error method.  
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Based on the results an extra validation of the H-C models was made against a step test. This 
was to distinguish the two models from the swapping of the data and see which one that 
performs the best 
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5 RESULTS  
Below the results of the system identification are shown. The models of the downstream end 
water level of H-C are called HCd1 if the model is estimated on the data set BS1, and HCd2 if 
the data set is estimated on data set BS2. The models of the upstream end water level are 
called HCu1 and HCu2 where the u stands for the upstream end. M-G has the same labelling 
logic, MGd1, MGd2 etc. HC1, HC2, MG1 and MG2 are the combined models, with the 
parameters c1-c4 for data set BS1 and BS2.  

5.1 ESTIMATION AND VALIDATION RESULTS IN FIGURES 

5.1.1 Estimated parameters Horticultural – Coly 3  
In Table 5.1 below the result for pool H-C is shown. cf stands for criterion function, see 
theory in Section 4.3 equation (4.8). It is the mean squared error between simulation model 
and measured output for the data set that was used for estimation of the parameters. cfv is the 
same as cf but it is the mean squared error between simulation and measured output for the 
validation data set. c1, c2 are the parameters for the HCd model. c3, and c4 are the parameters 
for the HCu model, see the model structure selection Section in Chapter 4. The first two 
columns are the results of the identification with all the significant digits given from Matlab. 
The following two columns are the results when the original results are rounded off to two 
significant digits. The last column is when the results are rounded off to three significant 
digits. This was done to see how many significant digits that needs to be considered and still 
get a good result. For the HC2 case two significant digits was enough, for the HC1 case three 
significant digits had to be considered. 
 

Table 5.1 The system identification results for the first order OE models, where cf, stands 
for the criterion function for the estimation set, cfv stands for the criterion function for the 
validation set, c1-c4 are the estimated parameters, HC1 and HC2 are the models estimated on 
data set BS1 and data set BS2 respectively. The model structure used was a first order OE 
model structure. 

Model HC2 HC1 HC2 HC1 HC1 
Cf   [m2] 8.185e-5 5.569e-5 6.039e-5 2.14127e-3 5.538e-5 
cfv [m2] 6.347e-5 7.353e-5 7.164e-5 4.00895e-3 9.283e-5 

c1 0.01262494 0.01054406 0.013 0.011 0.0105 
c2 -0.00795972 -0.00660941 -0.0080 -0.0066 -0.00661 
c3 0.01070372 0.00880606 0.011 0.0088 0.00881 
c4 -0.00680996 -0.00556130 -0.0068 -0.0056 -0.00556 

 
The cfv of the H-C model says that the average error on the model is 0.85 and 0.96 cm for the 
models with fewer significant digits in the parameters (which still gave good results) column 
3 and 5 in Table 5.1. As stressed earlier it is not possible to draw any strong conclusions only 
from the cfv.  
 
The parameters c1-c4 changes about 17% from model built on BS2 to model built on BS1, but 
the ratios, c1/c2 and c3/c4 do not change much at all. The ratios changes less than one percent. 
See Table 5.2  
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Table 5.2 Ratios for c1/c2 and c3/c4 for the models HC1 and HC2  
Model HC1 HC2 
c1/c2 1.586 1.595 
c3/c4 1.572 1.583 

 

5.1.2 Estimated parameters Morundah – Grants 
The labels in Table 5.3 have the same meaning as the labels in Table 5.1. The cfv for the M-G 
model says that the average error is 1 and 1.3 cm for the models with fewer significant digits 
in the parameters (which still gave good results) column 3 and 5 in Table 5.3. For the both 
cases BS1 and BS2, two significant digits were enough to get a result similar to the original. 
Though for the BS2 case three significant digits gave an even more similar result, see the cfv 
value in the table.  

Table 5.3 Table over the system identification results for the first order OE models, where 
cf, stands for the criterion function for the estimation set, cfv stands for the criterion function 
for the validation set, c1-c4 are the estimated parameters, MG1 and MG2 are the models 
estimated on data set BS1 and data set BS2 respectively. The model structure used was a first 
order output error model structure. 

Model MG2 MG1 MG2 MG1 MG1 
cf   [m2] 1.1809e-4 1.5309e-4 2.6831e-4 2.1695e-4 1.5297e-4 
cfv [m2] 1.8156e-4 1.0721e-4 1.7487e-4 2.5936e-4 1.0755e-4 

c1 0.00349498 0.00358925 0.0035 0.0036 0.00359 
c2 -0.00568037 -0.00592034 -0.0057 -0.0059 -0.00592 
c3 0.00247268 0.00319130 0.0025 0.0032 0.00319 
c4 -0.00394079 -0.00525445 -0.0039 -0.0053 -0.00525 

 
Between the two data sets, BS1, BS2, the parameters c1 and c2 do not change much at all, only 
about 2.7% for c1 and 4% for c2 from model MG2 to MG1. For the upstream end water level 
model the parameters c3 and c4 changes much more, about 30% for c1 and 33% for c2.  

5.2 RESULTS IN PLOTS 

5.2.1 Plots of Horticultural – Coly 3 
In Figure 5.1 and 5.2 the simulation plots are represented, from the model validations of the 
HCd models. It can be seen that the models follow the validation data well for the whole 
simulation period, 11 and 13 hours. That is longer than for the HMC study which only had 8 
hours of validation data. Important to note is that the simulation only uses the first measured 
values of the water level and the rest is simulated and that the model still give a good 
prediction after so long period of simulation. In the plots it is shown that it is more a “worst 
case” when  the model differs from data with about 1 cm, other times the model is very well 
adapted to the data. 
 
In Figure 5.5 and 5.6 the simulation plots for the HCu models can be studied. These plots also 
show that the models follow the validation data well. After 7-8 hours of simulation a drift on 
the model starts to become more distinct. The drift is not very big, it is about 2-3 cm when it 
is worst.  
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5.2.2 Plots of Morundah – Grants  
In Figure 5.3 and 5.4, the plots of the MGd simulation models are represented. For these 
models the same thing can be said, the simulation follows the validation data well for the 
whole simulation period. For this case the difference between the simulation and validation 
data is also about 1 cm in the worst case. 
 
For the MGu model in Figure 5.7 and 5.8 it is a clear difference in model quality compared to 
the HCd, HCu and MGd models. The model catches the dynamics well, but it is not capable 
of predicting the water level. It differs about 4-7 cm in the worst case.   
 
Worth noting is that the change in water level during the experiment is between 10-20 cm and 
the total simulation time is 11 and 13 hours. 

5.2.3 Validation of the HC models on a step test 
Based on the results, a decision was made to validate the H-C models against a step test. This 
was done to see which one of the two models that was giving the best results when the gate 
positions had the same positions for a long time. In Figure 5.9 and 5.10 it can be seen that 
both the models are performing well. There is a slight difference but it is very small.   

5.3 TIME DELAYS OF THE MODEL 
Models with different time delays were created. The time delays that were used were values 
around the time delays estimated from the experiment results. The time delays that were 
found to give the best models were 10 min for H-C and 20 min for M-G, i.e. 5 and 10 samples 
respectively in the models. See Table 5.4. 
 
Table 5.4 Values of the criterion function calculated for the validation data for models 
estimated with different time constants. The high lighted column is the time delays which 
gave the best results. 
Time delay[min] 6 8 10 12 14 

cfvHC1 [m2] 7.6719e-5 7.558e-5 7.353e-5 1.060e-4 7.9e-5 
Time delay[min] 16 18 20 22 24 

cfvMG1 [m2] 4.999e-4 3.878e-4 1.072e-4 2.802e-4 4.858e-4 
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Figure 5.1 The simulated output (dashed) from the model HCd2 compared with the 
measured output from the validation data set, BS1 (solid). The estimated parameters of model 
HCd2 was rounded off to two significant digits. 
 

 
Figure 5.2 The simulated output (dashed) from the model HCd1 compared with the 
measured output from the validation data set, BS2 (solid). The estimated parameters of model 
HCd1 was rounded off to three significant digits. 
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Figure 5.3 The simulated output (dashed) from the model MGd2 compared with the 
measured output from the validation data set, BS1 (solid). The estimated parameters of model 
MGd2 was rounded off to two significant digits.  
 

 
Figure 5.4 The simulated output (dashed) from the model MGd1 compared with the 
measured output from the validation data, BS2 set (solid). The estimated parameters of model 
MGd1 was rounded off to three significant digits. 
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Figure 5.5 The simulated output (dashed) from the model HCu2 compared with the 
measured output from the validation data set, BS1 (solid). The estimated parameters of model 
HCu2 was rounded off to two significant digits. 
 

 
Figure 5.6 The simulated output (dashed) from the model HCu1 compared with the 
measured output from the validation data set, BS2 (solid). The estimated parameters of model 
HCu1 was rounded off to three significant digits. 

38 



 
Figure 5.7 The simulated output (dashed) from the model MGu2 compared with the 
measured output from the validation data set, BS1 (solid). The estimated parameters of model 
MGu2 was rounded off to three significant digits. 
 

 
Figure 5.8 The simulated output (dashed) from the model MGu1 compared with the 
measured output from the validation data set, BS2 (solid). The estimated parameters of model 
MGu1 was rounded off to three significant digits. 
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Figure 5.9 The simulated output (dashed) from the model HCd2 compared with the 
measured output from the validation data set, the step test (solid).  
 

 
Figure 5.10 The simulated output (dashed) from the model HCd1 compared with the 
measured output from validation data set, the step test (solid). 
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6 DISCUSSION 

6.1 DISCUSSION OF THE H-C MODEL RESULTS 
The two models derived for the pool H-C are performing well. If the models are going to be 
used as tools for control design, the models are believed to be accurate enough. The quality 
demand is not very high for a model used for control purpose in a system with slow dynamics. 
As long as the model captures the main dynamics in the data, the rest can easily be handled by 
the controller. If the model is meant to be used for simulations it is not easy to say if the 
model is good enough, it all depends on the demand of simulation accuracy. What still can be 
said is that the models follow data very well, except for some extreme situations were the 
models differ from the data about 1 cm. The model is of first order so it can not describe the 
wave properties of the system. Another point to make is that the models perform very well 
throughout the whole simulation, 11 and 13 hours. It is up to the user to decide if this model 
quality is good enough. 
 
The HCu models also give good results. They have a drift at the end of the simulation (after 7-
8 hours) for both the models. It is difficult to see any strong evidence why this drift occurs. It 
needs to be mentioned that the upstream end models used the same time delay as the 
downstream end models. It should have been tested which time delay that was best. If a more 
suitable time delay had been found, the result of the upstream end model could have been 
better. 

6.1.1 The separation of the two H-C models 
For the HC models there was a considerable difference between the c-parameters depending 
on what estimation set that was used. The parameters changed with 17 percent from model 
HCd2 to HCd1. But the ratios c1/c2 and c3/c4 did not change much at all. That could be the 
explanation why the two models are both doing so well but still have big differences in the 
parameters. As long as the ratio between the two parameters is the same, the models have no 
problem in predicting the water level. That is only valid if the gates are changing often and 
roughly with the same magnitude. The problem occurs when the gates are opened for longer 
times, then it is necessary to know the correct parameter values. For example, if the 
parameters are overestimated, both the inflow and outflow will be overestimated but big 
inflow will be compensated with a big outflow. If the changes are small and frequent as in the 
discussion above the problem may not show. The water level can still be simulated correctly. 
 
To be able to separate HC1 and HC2 the models where validated against a step test. This was 
done to see which one that performed best when the gates openings only are changed once. In 
the results it was very difficult to separate the two models. Both the models performed well. A 
slightly better results was given for HC1, see Figure 5.9 and 5.10. The result indicates that the 
even for gate position changes with low frequency the model is not very sensitive to a change 
in the parameters as long as the ratios c1/c2 and c3/c4 are constant. The step test was only of 4 
cm, a bigger step might have been able to separate them better. According to model validation 
theory a model is not valid outside the conditions the model has been validated for. This is 
very evident in the HC modelling case. A recommendation could be to use the HC1 model. 
The recommendation is based on the step test result and the fact that the HC1 model is 
validated on a data set with broader water level range (about 10 cm) than the HC2 model. 
 
HC1 can be rounded off to two significant digits, HC2 needs to consider three, to show 
similar result as the original parameters. Having the above discussion about the ratio in mind, 
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it can be seen that when rounding off HC1 to two significant digits changes the ratio with 
more than ratio changes for HC2. That can be the explanation why HC1 is more sensitive for 
rounding off the parameters. 

6.2 DISCUSSION OF THE M-G MODEL RESULTS 
The quality of the MGd models is also very high. The simulation follows the measured data 
well, except it makes small misses in time and therefore gives an unfair cfv value. The misses 
in time at the slopes will give big contributions to the cfv value as, for example, seen in the 
plot in Figure 5.3. But it does not necessary mean that the model is bad.  
 
The MGu1 and MGu2 models do not give as good results as the other models. The models 
capture the main trend but do not give an accurate simulation of the water level. The question 
is why this model is so bad in comparison with the other models and what does this result 
mean for the MGd models? The answer can be that the downstream water level of the M gate 
site does not have that much influence on the inflow to the pool. The information of the 
influence from the water level is not good enough to estimate a model from. Even though the 
flow is submerged during the whole experiment for the two moving gates, this is not the case 
for the four gates (of the six in parallel) that are fixed. It should also be noted (this was also 
mentioned in Section 6.1) that the same time delay was used for both the upstream end model 
and the downstream end model. I.e., no particular search for an optimal time delay for the 
upstream end model was made. This is something that of course should have been done. The 
MGd models give very good result considering the bad MGu result. How can this be? The 
simulation of MGd is, as said before, based on the simulation of MGu. The above discussion 
said that the downstream water level does not have much influence on the inflow. If that is 
true, a small error in the water level will not make a too big difference in the downstream 
water level. The upstream water level does not need to be very accurate and still give a good 
simulation of the downstream water level. 
 
Which model that is best to use, as said before, is of course up to the user to decide, but 
according to the plots a recommendation could be the MG1 model because it covers a broader 
range, about 15 cm. The model MG1 is thus valid for a broader range than MG2    
 
In this irrigation channel the downstream water level is the important water level for control. 
For both the H-C and the M-G pools the downstream water level models give the best results.  

6.3 ADDED KNOWLEDGE 
The results of this project are believed to be interesting in the sense that it has never before, as 
far as the author knows, been built a system identification model on an irrigation channel, 
which:  

 
• has both undershot and overshot gates  
• is as long as 5-6 km  
• has as much as 6 gates in parallel that operates individually 

 
The study at the HMC only had valid results from channels where there were maximum two 
gates operated in parallel that always had the same position and that the channel lengths were 
up to 3 km. The overshot gates in the HMC were only operated in free flow. The new added 
experience is that the first order OE model can even describe drowned flow well. The 
validation set of this project is longer than what was used in the HMC study. Approximately 
13h compared with approximately 8h for the HMC study (Weyer, 2001). 
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In this work it has been shown that a first order output error model is well suited to describe 
the system dynamics for a pool with the above properties. 

6.4 SUGGESTIONS FOR FUTURE WORK 
A better way of comparing the models would have been to validate the models on a third data 
set. It would then be easier to say which one of the models that performs better than the other. 
But a third data set was not available, and the project was done during a limited period. 
 
The result of this project is satisfying. It gave a surprisingly good performance for such a low 
model order. This is very beneficial because the simpler the model is the less uncertainty and 
complexity is incorporated in the simulation. Even though the models have such a good 
performance, they are not able to describe the waves that occur in the pool. With the work on 
the HMC in mind, a third order model would have been interesting to build. The HMC project 
gave very good simulations with a third order model. The model captured the waves very 
well. Because of unpredicted delays in the project there was no time for such an investigation.  
 
The simulation of the pools makes more sense if the model describes the whole main channel. 
The main channel starts with a reservoir with an approximately constant water level over 
time. The channel also ends with an approximately constant water level. If there are models in 
between these water levels that can describe the channel behaviour, there would be a 
possibility of modelling all the water levels of the whole Coleambally main channel, with 
starting values of the first point in time and the two water levels at the reservoirs.  

 
For control purposes it is enough to have made the two models for a pool with undershot gates 
both upstream and downstream of a pool to get an idea of how the pools approximately 
behave. From the results of this project it can be seen that the time delay and time constant are 
linear with pool length. It needs to be said that they are not linear with big difference in flow 
and for big variations in conditions of water level. In the same irrigation system, properties of 
the system behaviour can be approximated with this knowledge without the need for building 
a proper model for every channel pool. One thing that still needs to be investigated is how the 
system behaves when there are undershot gates both upstream and downstream of the pool. 
 
In summary, based on the discussion above, the following topics may be topics for future 
studies  
 

• compare the models by validation against a third independent data set. 
• build a third order model for the pools H-C and M-G. 
• building models for a pool where there are undershot gates both upstream and 

downstream of the pool. 
• building models of the whole channel so that the channel can be simulated with only 

starting values and the water levels of the reservoir and the gate positions for the 
simulation period. 

• designing the control system of the channel. 
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7 CONCLUSIONS 
In this Master thesis project, estimation of models from data with the system identification 
approach was the applied method. The system object for modelling was an irrigation channel 
with both undershot and overshot gates. The H-C pool has undershot gates upstream and 
overshot gates downstream. Vice versa for the M-G pool.  
 
The models estimated for the H-C and M-G pools, both first order output error simulation 
models, describes the system dynamics very well for the validation data. The models can be 
expected to be well adapted for control purposes, which was the main aim for this project. 
The models have a good accuracy and may be used for various simulation purposes. It is of 
course up to the user to decide if the model is good enough for a particular simulation cause.  

44 



 

8 ACKNOWLEDGEMENTS 
I would like to thank Dr. Eric Weyer, my supervisor at Melbourne University, for great 
support, help and expertise during my work. I would also like to thank the people at Rubicon 
system, especially Paul Jones and Tony Oaks, for letting me perform the experiment on the 
real system and all the help during the experimentation. Last but not least I want to thank 
Magnus Holmgren (former class mate) and Professor Bengt Carlsson, Uppsala University, 
who helped to make it possible for me to do my thesis work at the University of Melbourne. 

45 



9 REFERENCES 

9.1 LITERATURE REFERENCES 
Roberson, J.A., Crowe, C.T., 1993 Engineering fluid mechanics , 5th ed., Houghton Mifflin 
Company, Boston 
 
Baume, J.P., Malaterre. P.O., Sau, j., 1998, "Modelling and regulation of irrigation canals: 
existing applications and ongoing researches", IEEE, 0-7803-4778 -1/98, pages 3850-3855 
 
Bos, M.G., 1976, Discharge Measurement Structures, International Institute for Land 
Reclamation and Improvement/ILRI, Wageningen 
 
Daily, J. W., Harleman, D.R.F., 1966, Fluid Dynamics, Addison -Wesley Publishing 
Company Inc., Massachusetts 
 
Fox, R. W., McDonald, A.T., 1994, Introduction to Fluid Mechanics (SI version), 4th ed. 
John Wiley & Sons inc, New York 
 
Ljung, L., 1999, System Identification - Theory for the User, 2nd ed., Prentice Hall PTR, New 
Jersey 
 
Ljung, L., Glad, T., 1991 Modellbygge och simulering, Studentlitteratur, Lund 
 
Mareels, I., Weyer, E., Ooi, S. K., 2003, "Irrigation Networks: A system Engineering 
Approach", International water & irrigation, Vol 23 No 4, pages 18-30 
 
Roberson, J.A., Crowe, C.T., 1993 Engineering fluid mechanics , 5th ed., Houghton Mifflin 
Company, Boston 
 
Rouse, H., 1961, Fluid Mechanics for Hydraulic Engineers, General Publishing Company Ltd, 
London 
 
Söderström, T., Stoica, P., 1989 System Identification, Prentice Hall, Engelwood Cliffs 
 
Webber, M.B., 1971, Fluid Mechanics for Civil Engineers (S.I. Edition), Chapman and Hall, 
Ltd, London 
 
Weyer, E., 2001, "System identification of an open water channel", Control Engineering 
Practice 9, 1289-1299  

9.2 INTERNET REFERENCES 
1. Melbourne Water, 
http://conservewater.melbournewater.com.au/content/conserve/driest.htm, 2004-04-22 
 
2. http://www.farmweb.au.com/h2o/h2use.html, 2004-04-22 
 
3.UNESCO, http://www.unesco.org/water/wwap/targets/facts_and_Figures.pdf , 2004-04-22 
 
4. http://www.colyirr.com.au/AboutCICL/index.asp, 2004-04-22   

46 



 

9.3 PERSONAL COMMUNICATION 
Weyer, E., 2004 
 
Rubicon System, 2004 
 
 
 
 

47 


