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ABSTRACT

Optimal steady-state design of bioreactors in series with Monod growth kinetics

Hanna Molin

Bioreactors are used to carry out bioprocesses and are commonly used in e.g. biogas
production and wastewater treatment. Two common hydraulic models of bioreactors are
the continuous stirred tank reactor (CSTR) and the plug-flow reactor (PFR). In this paper,
a differential equation system that describes the substrate, biomass and inert biomass in
the bioreactors is presented. It is used in a steady-state analysis and design of CSTRs in
series. Monod kinetics were used to describe the specific growth rate and the decay of
biomass was included. Using the derived systems of differential equations, two optimiza-
tion problems were formulated and solved for both CSTRs in series and for a CSTR+PFR.
The first optimization problem was to minimize the effluent substrate level given a total
volume, and the second was to minimize the total volume needed to obtain a certain sub-
strate conversion.

Results show that the system of differential equations presented can be used to find op-
timal volume distributions that solves the optimization problems. The optimal volume
for N CSTRs in series decreases as N increases, converging towards a configuration of a
CSTR followed by a PFR. Analyzing how the decay rate affects the results showed that
when the total volume was kept constant, increasing the decay rate caused less differ-
ence between the configurations. When the total volume was minimized, increasing the
decay rate caused the configurations to diverge from each other. The presented model
can be used to optimally divide reactors into smaller zones and thereby increasing the
substrate conversion, something that could be of interest in e.g. existing wastewater treat-
ment plants with restricted space. A fairly accurate approximation to the optimal design
of N CSTRs in series is to use the optimal volume for the CSTR in the configuration with
a CSTR+PFR and equally distribute the remaining volumes.

Keywords: Bioreactor, CSTR, PFR, optimization, modelling, Monod kinetics, decay
rate
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REFERAT

Optimal design av bioreaktorer i serie vid steady-state med tillväxt som följer Monod-
kinetik

Hanna Molin

Bioreaktorer används för att utföra olika biologiska processer och används vanligen inom
biogasproduktion eller för rening av avloppsvatten. Två vanliga hydrauliska modeller som
används vid modellering av bioreaktorer är helomblandad bioreaktor (på engelska contin-
uous stirred tank reactor, CSTR) eller pluggflödesreaktor (på engelska plug-flow reactor,
PFR). I den här rapporten presenteras ett system av differentialekvationer som används för
att beskriva koncentrationerna av substrat, biomassa och inert biomassa i både CSTR och
PFR. Ekvationssystemet används för analys och design av en serie CSTRs vid steady-
state. Tillväxten av biomassa beskrivs av Monod-kinetik. Avdödning av biomassa är
inkluderat i studien. Från ekvationssystemet formulerades två optimeringsproblem som
löstes för N CSTRs i serie och för CSTR+PFR. Det första optimerinsproblemet var att
minimera substrathalten i utflödet givet en total volym. I det andra minimerades den totala
volymen som krävs för att nå en viss substrathalt i utflödet.

Resultaten visade att ekvationssystemet kan användas för att hitta den optimala volymsfördel-
ningen som löser optimeringsproblemen. Den optimala volymen för N CSTRs i serie
minskade när antalet CSTRs ökade. När N ökade konvergerade resultaten mot de för en
CSTR sammankopplad med en PFR. En analys av hur avdödningshastigheten påverkade
resultaten visade att en ökad avdödningshastighet gav mindre skillnad mellan de två olika
konfigurationerna när den totala volymen hölls konstant. När den totala volymen istället
minimerades ledde en ökad avdödningshastighet till att de två konfigurationerna diverg-
erade från varandra. Modellen som presenteras i studien kan användas för att fördela en
total reaktorvolym i mindre zoner på ett optimalt sätt och på så vis öka substratomvan-
dlingen, något som kan vara av intresse i exempelvis befintliga avloppsreningsverk där
utrymmet är begränsat. En relativt bra approximation till den optimala designen av N
CSTRs i serie är att optimera volymerna för en CSTR+PFR, använda volymen för CSTR
som första volym i konfigurationen med N CSTR i serie, och sedan fördela den kvar-
varande volymen lika mellan de övriga zonerna.

Nyckelord: Bioreaktorer, CSTR, PFR, optimering, modellering, Monod-kinetik, avdödning-
shastighet
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I would like to thank Bengt and Jesús for giving me the opportunity and trusting me
to carry out this project, and for sharing their expertise and providing valuable feedback
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POPULÄRVETENSKAPLIG SAMMANFATTNING

Bioreaktorer kan användas inom många olika områden, till exempel för att producera bio-
gas eller rena avloppsvatten. Det är ofta önskvärt att minska halten av ett visst substrat i
en bioreaktor. I avloppsvattenrening är substratet organisk kol som bryts ned av mikroor-
ganismer. Mikroorganismerna använder kolet i sin metabolism. Genom att bryta ned
substratet får således mikroorganismerna energi och deras biomassa ökar. Det finns olika
modeller som beskriver tillväxten av mikroorganismer. I den här studien har Monod-
kinetik använts. Nettotillväxten påverkas också av att mikroorganismer förr eller senare
kommer dö. Tidigare studier har gjorts inom samma område som den här studien, men
då har det antagits att mikroorganismerna inte dör. Till skillnad från dem har avdödning-
shastigheten inkluderats i den här studien.

Det finns olika modeller för att beskriva hydrauliken i en bioreaktor där två vanliga
modeller är för en helomblandad bioreaktor (på engelska continuous stirred tank re-
actor, CSTR) eller pluggflödesreaktor (på engelska plug-flow reactor, PFR). Ingen av
dessa modeller återspeglar dock vad som normalt återfinns i praktiken. Oftast är biore-
aktorer någonstans emellan dessa två idealfall. En mer realistisk modell är att använda
flera CSTRs i serie. I den här studien har två olika sammansättningar av bioreaktorer
undersökts, nämligen ett antal (N ) CSTRs i serie och en CSTR efterföljd av en PFR
(CSTR+PFR). Den sistnämnda sammansättningen har tidigare visat sig vara mer effek-
tiv än CSTRs i serie. Det har också bevisats att en PFR kan liknas vid oändligt många,
oändligt små CSTRs.

I studien presenteras en uppsättning ekvationer som beskriver hur substrat- och biomas-
sakoncentrationerna förändras i de två olika typerna av bioreaktorer (CSTR och PFR).
Analyser har gjorts vid så kallat ”steady-state”, dvs. att ingen förändring sker över tid,
och utifrån det har samband tagits fram för att simulera hur halterna förändras från inflödet
till utflödet av bioreaktorerna. Två olika optimeringsproblem har studerats. I det första
var den totala volymen given och försök gjordes för att fördela den totala volymen mel-
lan N CSTR eller mellan en CSTR och en PFR för att få så låg substrathalt som möjligt
i utflödet. I det andra optimeringsproblemet minimerades den totala volymen för att nå
en viss given substrathalt i utflödet. Både sammansättningen med N CSTR i serie och
CSTR+PFR undersöktes.

Studien har visat att de ekvationssystem som sattes upp går att använda för att lösa de
två optimeringsproblemen. Den har också visat att om antalet CSTR ökar (dvs. N →∞)
så närmar sig lösningen förN CSTR i serie den för CSTR+PFR. Hur många CSTR i serie
som krävs för att nå detta beror på vilka parameterar som väljs, främst hur stor avdödning-
shastigheten är. I studien undersöktes därför hur avdödningshastigheten påverkade re-
sultaten. Två intressanta resultat är att (1) om avdödningshastigheten är tillräckligt stor
kommer det inte vara någon skillnad mellan att användaN CSTRs i serie eller att använda
en CSTR+PFR om den totala volymen är given, samt att (2) om volymen istället ska
minimeras blir det större skillnad mellan de två sammansättningarna när avdödning-
shastigheten ökar.
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Resultaten från studien visar att den metod som har använts här kan användas i exempelvis
befintliga avloppsreningsverk där det inte finns möjlighet att bygga ut reningsbassängerna.
Genom att använda den befintliga volymen och dela upp den i zoner kan man öka ren-
ingsgraden. Studien har också visat att man inte behöver optimera alla volymer för att
få bättre reningsgrad. Det räcker att optimera den första zonen och sedan fördela den
kvarvarande volymen jämnt mellan de efterföljande zonerna.
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NOMENCLATURE

Bioreactor Apparatus to carry out bioprocesses
Steady-state No change with time
Substrate Reactant consumed during a catalytic or enzymatic reaction
Microorganisms Microscopic organisms including bacteria, protozoa and ar-

chaea amongst others.
Biomass Another word here used for microorganisms. Refers to the

total mass that the microorganisms make up.

Abbreviations
CSTR Continuous stirred tank reactor
PFR Plug-flow reactor
ASP Activated sludge process
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Parameters and variables
A Area [m2]
b Decay rate [d−1]
fp Fraction between inert biomass and substrate [-]
h Position in the PFR [m]
KS Half-saturation constant [kgm−3]
N Number of CSTRs [-]
Q Flow rate [m3d−1]
S Substrate [kgm−3]
Se Substrate level in the effluent [kgm−3]
Si Substrate level in the i-th reactor [kgm−3]
Sin Substrate level in the influent [kgm−3]
Smin The minimum substrate level that can be obtained in the reactors [kgm−3]
V (N) The optimal total volume for N CSTRs in series [m3]
V ∗

1 The optimal volume of the CSTR in the configuration of a CSTR+PFR [m3]
V min

1 Wash-out volume, the minimum volume the first CSTR must have [m3]
V opt

1 The optimal volume of the first CSTR [m3]
Vi The volume of the i-th CSTR [m3]
Vopt The optimal total volume for the CSTR+PFR [m3]
Vtot Total volume [m3]
X Biomass [kgm−3]
Xe Biomass level in the effluent [kgm−3]
Xi Biomass level in the i-th CSTR [kgm−3]
Xin Biomass level in the influent [kgm−3]
Y Yield factor [-]
Z Inert biomass [kgm−3]
Ze Inert biomass level in the effluent [kgm−3]
Zi Inert biomass level in the i-th CSTR [kgm−3]
Zin Inert biomass level in the influent [kgm−3]
µ(S) Specific growth rate [d−1]
µmax Maximum specific growth rate [d−1]
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1 INTRODUCTION

A bioreactor, in a broad definition, is an apparatus used to carry out bioprocesses. Biore-
actors are frequently used in various industrial processes. They can be used for biogas
production where organic material is fermented to produce biogas (see e.g. Bouallagui
et al., 2005) or in pharmaceutical production (see e.g. Miao et al., 2008). Furthermore are
bioreactors vastly used in wastewater treatment (see Lee et al., 2006; Radjenovic et al.,
2009, amongst others).

1.1 BACKGROUND

The optimal design of bioreactors has been of interest for the last decades in order to
e.g. minimize costs, increase performance, or minimize the required space (Harmand and
Dochain, 2005). In wastewater treatment, bioreactors are used to reduce the substrate con-
centration of the incoming wastewater. This can be done by passing the flow through one
or several bioreactors in series. The bioreactors are typically modelled as complete stirred
tank reactors (CSTRs) where microorganisms (biomass) consume the substrate, i.e. the
biomass increases as the substrate is reduced (von Sperling, 2007). When the number of
CSTRs is large enough, one can model the several CSTRs as only one CSTR connected
to a plug flow reactor (PFR) (Zambrano et al., 2015). Mathematically, the process in
the bioreactors can be described using dynamic models consisting of ordinary differential
equations (ODEs) that account for growth and decay of the biomass, as well as properties
of the reactors and the treated wastewater.

Analytical and numerical results on optimizing bioreactors can be found in early work
by e.g. Bischoff (1966), to more recent work by e.g. Gómez-Pérez and Espinosa (2017).
Bischoff (1966) studied the total residence time for two CSTRs in series and showed that
for many cases, combining a CSTR and a PFR gives the lowest residence time to achieve
a certain substrate conversion. Gómez-Pérez and Espinosa (2017) analyzed the design of
continuous bioreactors in series by representing them as a system of linear equations and
found non-trivial solutions by using singular value decomposition as an analysis tool. The
singular value decomposition analysis made it possible to characterize the solutions to the
equation system, and thereby improve the design of bioreactors in series.

Zambrano et al. (2015) recently presented a new approach to the optimal design of zone
volumes of bioreactors using Monod kinetics. They studied the optimal design of CSTRs
in series when the number of CSTRs is large (2-10 CSTRs in series). Assumptions that
were made include that the process followed Monod growth kinetics, the decay rate was
zero, and there were only two main components included in the model (one particulate
biomass and one soluble substrate). Since the study did not include the decay of biomass,
an interesting way to continue this study is to incorporate and analyze the effect of a decay
term.
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1.2 OBJECTIVE

The objective of this study is to extend the analysis by Zambrano et al. (2015) by adding
the biomass decay rate and one more ODE which represents the inert biomass. The study
will include two optimization problems:

• Minimize the effluent substrate level by optimally distribute the volumes, given a
certain total volume

• Minimize the total volume needed to obtain a certain substrate conversion

that will be solved numerically for several CSTRs in series as well as of one CSTR con-
nected to a PFR. If possible, an analytical solution of the process is to be found by ana-
lyzing a large number of CSTRs in series as one CSTR connected to a PFR. In this case,
a comparison between the behavior of optimally designed CSTRs in series and optimally
designed CSTR+PFR would be interesting to obtain.

1.3 ASSUMPTIONS AND DELIMITATIONS

Some assumptions were made to simplify the analysis. It was assumed that the growth
follow Monod kinetics (Monod, 1949). The Monod equation is an empirical formula
that was developed for a single organism metabolizing a single substrate (see ch. 2.1.1).
Thus, it must be assumed that there is one main biomass which consumes one main dis-
solved substrate, although in wastewater treatment, this assumption is usually not valid
(von Sperling, 2007). The Monod formula has however been proven to give a fair approx-
imation and has been widely used in many mathematical models for wastewater treatment.

Two major factors affecting the growth of the microorganisms are oxygen level and tem-
perature. The reaction rate in chemical reactions increase with temperature. The same
tendency can be seen in biochemical processes as well, but within certain ranges (Ran-
dall et al., 1982; von Sperling, 2007). For this analysis, it was assumed that none of the
biological parameters change with the liquid temperature. Furthermore, it was assumed
that the oxygen demand was fulfilled throughout the reactors. Microorganisms consume
oxygen in their metabolism. Ideally, the oxygen level is sufficient to cover the oxygen
demand in the whole reactor volume whereas in reality, hypoxic or anoxic conditions can
occur locally.

One key assumption in this study is that the parameters and variables are time-invariant,
meaning that steady-state conditions prevail. We assume instant steady-state (no spin up).
Assuming steady-state simplifies the analysis, although one drawback is that the dynamic
differential equations become static. In reality, both the substrate and biomass levels, and
other variables such as flow rate, might change with time. As an example, in wastewa-
ter treatment plants there are diurnal variations in both the composition of the incoming
wastewater and the flow rate. The presented model will not take such changes into ac-
count. It will however provide new insight on the dynamics and the design procedure of
bioreactors in series.
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2 THEORY

Due to the variety in applications for bioreactors, there are also different types of biore-
actors. Thereby, there are several models which can be used to model the hydraulics of
the reactors. Two common hydraulic models are the CSTR and the PFR (von Sperling,
2007). Both the CSTR and PFR are idealized reactors where the flow is continuous. In
the PFR, the flow stream enters the tank on one end and the particles then pass through
the reactor. The particles discharge in the same sequence in which they entered and no
longitudinal mixing occurs in the tank. In the CSTR, the particles are immediately iden-
tically dispersed in the reactor volume. The composition in the outflow thus reflects the
composition in the reactor. However, both total and identical dispersion and complete ab-
sence of longitudinal dispersion is hard to obtain in practice. A hydraulic model between
the PFR and the CSTR is using several CSTRs in series. As the number of CSTRs goes
towards infinity, the system will reproduce a PFR (von Sperling, 2007). This hydraulic
model is more realistic since reactors are seldom ideal PFR or CSTR in reality (Tsai and
Chen, 2011).

When comparing CSTRs to PFRs, it has been established that PFRs require a smaller vol-
ume than CSTRs to obtain a certain conversion rate. However, PFRs suffers from some
drawbacks which limits their practical use, e.g.: (i) in multiphase systems, the gaseous
phases can affect and increase back mixing which thwart the plug flow, and (ii) in a per-
fect autocatalytic PFR, the biomass must be continuously inoculated which might be hard
to achieve in practice (Harmand and Dochain, 2005).

In the following sections, a short introduction to the microbial processes within biore-
actors will be given followed by a review on previous research in the subject field to
motivate the importance of the intended study.

2.1 MICROBIAL GROWTH AND DECAY

This section aims to give an insight to the biological processes occurring in the biore-
actors to give a better understanding of the following sections were the optimization of
bioreactors will be further addressed. Often, especially in wastewater treatment appli-
cations, the purpose of a bioreactor is to reduce a certain substrate with the use of mi-
croorganisms. A widely used model that describes the biological processes in wastewater
treatment systems is the IAWQ (International Association on Water Quality) Activated
Sludge Model no. 1 (ASM1; Henze et al., 1987). The bisubstrate model used in ASM1
models the process as presented in Figure 1. Slowly biodegradable matter becomes read-
ily biodegradable through hydrolysis, where long-chained molecules are broken down to
smaller molecules. The hydrolysis is assumed to be instantaneous in this study, which
simplifies the model (Fig. 1).
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Figure 1. A schematic overview of the biological process. The black arrows show the
bisubstrate model in ASM1 (Henze et al., 1987), and the red arrows show the simplified
model used in this study where the hydrolysis is assumed to be instantaneous.

The microorganisms consume the substrate in their metabolism, causing a decrease in the
substrate level and an increase in biomass (microorganisms). The growth of biomass can
be divided into four phases (Fig. 2; Comeau, 2008),

1. Lag phase: cells acclimate to the new situation. Little biomass increase and sub-
strate consumption. Growth rate close to zero.

2. Exponential phase: the substrate is readily available. The growth rate is constant
and at its maximum.

3. Stationary phase: little external substrate is available. Growth rate is back to almost
zero, thus the biomass concentration is relatively constant.

4. Death phase: the biomass starts to decrease due to shortage of substrate, predation
and lysis. Thus, the growth rate is negative.

Figure 2. The logarithmic biomass concentration with time, divided into the four phases:
lag phase, exponential phase, stationary phase and death phase.
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The exponential phase can be regarded as a steady-state where the ratio between the con-
centration of the substrate and the concentration of the biomass is constant. During the
lag phase, there is a gradual build up towards the steady-state. The rate of the build-up
is dependent on the specific conditions and properties of the microorganisms (Monod,
1949).

In this section, the exponential growth phase will be considered, starting off by defin-
ing cell concentration as the number of individual cells per unit volume of a culture. The
cell concentration is denoted X(t) and is a time dependent function. Exponential growth
means that after a certain time interval, td, the cell concentration will have doubled, or in
mathematical terms,

X(t) = X02(t−t0)/td (1)

where X0 is the initial concentration (at t = t0). Using logarithms on both sides of the
expression results in the following expression

lnX(t)− lnX0

t− t0
=

1

td
ln2 (2)

The growth rate can be found by letting t→ t0 in the derivative of X(t)

d

dt
lnX(t) =

1

X(t)

dX(t)

dt
=

1

td
ln2 = µ (3)

where µ is the specific growth rate (see section “The specific growth rate”).

The exponential phase ends when the growth is limited. Limiting factors include exhaus-
tion of nutrients (or substrate), accumulation of toxic metabolic products, and changes in
ion equilibrium (Monod, 1949). The biomass will eventually decay. This can be consid-
ered by adding a decay term. The specific biomass decay rate, b, is similar to the specific
growth rate, although negative. It is defined

b = −dX(t)

Xdt
(4)

The net growth with decay is µ − b. Introducing a decay rate in the system will cause a
lower net growth.

The dead biomass either becomes substrate or inert biomass (Fig. 1). The amount that be-
comes inert is decided by the parameter fp, which takes on values in the interval 0.0-1.0.
Consequently, the amount that becomes substrate is 1 − fp. A low value on fp will thus
cause a higher substrate generation, especially if combined with a high decay rate (Fig.
1).
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2.1.1 The specific growth rate

The specific growth rate is the rate of increase in cell concentration per unit cell concen-
tration and it can be modelled in various ways. Monod (1949) presented an empirical
relation between the concentration of the growth limiting substrate, S, and the half satu-
ration constant, KS ,

µ(S) = µmax
S

(KS + S)
(5)

where µmax is the rate limit for increasing concentrations of S, or the maximum specific
growth rate.

Other kinetic models include Contois, Haldane, and Michaelis-Menten, whom all have
been used in the modelling of bioreactors. A model similar to the Monod growth model is
the Michaelis-Menten equation. It is based on theoretical principles and was derived for
enzymatic reactions, as opposed to the Monod equation which was derived for biological
reactions (von Sperling, 2007). Haldane kinetics accounts for inhibitory effects at high
substrate concentration. With high substrate concentrations, the bioreactors can suffer
from overloading. This is not accounted for in the Monod equation. The Contois model,
unlike the Monod, depend on the biomass concentration.

Carlsson and Zambrano (2014) presented a study on the optimal design of CSTRs in
series where both Monod and Contois kinetics were used. They showed that the optimal
design differed depending on the choice of growth kinetics. The optimal volume needed
for the first CSTR and the effluent substrate level decrease when the substrate level enter-
ing the system increase when using Monod kinetics. The optimal volume needed for the
first CSTR is independent on the influent substrate level, and the effluent substrate level is
proportional to that of the influent when using Contois kinetics (Carlsson and Zambrano,
2014).

Monod kinetics are frequently used in wastewater treatment modelling and have proven
to be suitable for this application (Braha and Hafner, 1984). Thus, Monod kinetics will
be used to describe the growth kinetics in this study. The Monod equation was derived for
a single substrate metabolized by a single microorganism. This must be acknowledged
when applying the Monod equation to processes where the substrate is not homogeneous
and several populations of microorganisms are active (von Sperling, 2007). There are
ways of extending the Monod equation to also include various substrates and nutrients, or
environmental factors such as pH and temperature in the model. This will however not be
done in this study.

2.2 OPTIMIZATION OF BIOREACTORS IN SERIES

Finding the optimal design of bioreactors has been extensively studied for the last decades.
Optimization of bioreactors has important advantages that can be related to e.g. minimiz-
ing costs, increase performance, and minimize the required space (Harmand and Dochain,
2005). When it comes to optimize CSTRs, the general approach has been to find the opti-
mal distribution of volumes for a certain requirement on the substrate concentration in the
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effluent. Early studies on the optimal design of bioreactors can be found in e.g. Bischoff
(1966). Bischoff (1966) minimized the total residence time for two CSTRs in series fed
with a single stream under the assumption that there was no decay of biomass. The study
showed that for many cases, combining a CSTR and a PFR (CSTR+PFR) will give the
lowest residence time to achieve a certain substrate conversion. This combination of a
CSTR followed by a PFR can be regarded as one CSTR followed by an infinite number
of infinitesimally small CSTRs. The degree of conversion in a system consisting of N
CSTRs in series will converge towards the CSTR+PFR when N becomes large (Bischoff,
1966).

Luyben and Tramper (1982) investigated the behaviour of N CSTRs in series, with N
ranging from 1-10, using Michaelis-Menten kinetics. They defined optimal design as
finding the minimum mean holding time to perform a specific conversion and studied two
cases: optimum volumes and equal-sized volumes. The study included an evaluation of
a PFR as well to use as comparison. The study showed that the mean holding time is
lowest for a PFR, that the mean holding time of the CSTRs in series decreases when N
increase, and that the performance of N CSTRs in series converges towards one CSTR
followed by a PFR as N increases. Hill and Robinson (1989) also studied the optimal
design of CSTRs in series but with Monod kinetics. They derived an expression to find
the minimum possible total residence time to achieve any desired substrate conversion.
Findings include that three optimally designed CSTRs in series provide the same required
total mean residence time as a PFR (Hill and Robinson, 1989). de Gooijer et al. (1996)
derived expressions for the minimum holding time for one and two CSTRs in series for
different growth kinetics. They presented an optimization criterion to decide if and when
multiple CSTRs in series are more productive than a single CSTR.

Many studies focus on the optimal design of CSTRs in series and the mathematical de-
scription of this is well established. There are only a few attempts on finding steady-state
mathematical models to design PFRs in the literature (Liotta et al., 2015). Recently, Zam-
brano et al. (2015) presented a differential equation approach to find the optimal steady-
state design of zone volumes. Monod kinetics were used and the decay of biomass was
neglected. They derived an analytical expression to find the optimal volume of a CSTR
followed by a PFR. The solution was evaluated with some numerical examples and com-
pared to the solution of N CSTRs in series. Two design problems were evaluated: (i)
minimize the substrate effluent level given a certain total volume, and (ii) minimize the
total volume required to achieve a certain substrate effluent level. The explicit expressions
derived for the CSTR+PFR showed that the optimal volume of the CSTR is the same for
both design problems (Zambrano et al., 2015).

2.3 APPLICATION OF BIOREACTORS IN WASTEWATER TREATMENT

Bioreactors are widely used in the biological treatment of wastewater. They can be applied
for removal of nitrogen, phosphorous, and organic matter. The optimization of volumes
in bioreactors are of fundamental importance when it comes to wastewater treatment.
The optimization can either be done as a means of minimizing operational or production
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costs, or fulfilling law binding restrictions on the effluent substrate levels. In already ex-
isting wastewater treatment plants, with given total reactor volumes, there might be an
interest in how to find the optimal zone volumes to minimize to steady-state effluent sub-
strate concentration. This was studied by Zambrano and Carlsson (2014) where they used
both Contois and Monod kinetics and optimized the zone volumes given N = 1, . . . , 5
zones. The substrate effluent level can be decreased by dividing the total volume in sev-
eral zones, and the more zones, the lower substrate effluent level (Zambrano and Carlsson,
2014). They also optimized the zone volumes, given a total volume, for more than two
bioreactors in an activated sludge process and showed that the optimal zone volumes dif-
fer depending on growth kinetics.

The activated sludge process (ASP) is a biological treatment technique used in wastewa-
ter treatment. The idea behind it is to maintain a certain part of the sludge suspended in
the wastewater. Microorganisms use the organic material in the wastewater as its energy
source and degrade it while consuming oxygen. In the ASP, the bioreactor is followed
by a settler where the sludge settles and the microorganism concentration is increased. A
recycle stream returns a certain amount of the sludge to the bioreactors. A common use
of bioreactors in the treatment process is in the ASP.

The optimal design of bioreactors can be applied and extended to the ASP. San (1989)
conducted a study where a recycle loop was incorporated in the optimal design of a PFR.
The decay of microorganisms was included and the growth rate was governed by Monod
kinetics. A relationship between biomass and substrate concentrations was obtained and
compared with numerical solutions. Scuras et al. (2001) optimized the configuration of
the activated sludge reactor and studied the kinetics. A procedure to determine optimum
reactor configuration for different values of substrate concentrations, half saturation coef-
ficients, and the number of tanks was presented. Results showed that the benefit of staging
is greater when the influent substrate concentrations are high and the requirements on the
effluent substrate concentration is strict, and that optimizing the volumes give a higher
conversion rate than using equal sized tanks. Monod kinetics were used and the decay of
biomass was neglected.

Harmand et al. (2003) evaluated and optimized two interconnected step-fed bioreactors,
thus providing insight in the optimization of a recirculation loop and/or a distributed feed-
ing system. The total required volume to achieve a certain substrate conversion can be
significantly decreased by using a distributed flow and a recirculation loop. Based partly
on the study by Harmand et al. (2003), a graphical way to optimally design (here mini-
mum total volume needed to perform a certain conversion) two interconnected reactors,
valid for both catalytic and autocatalytic biochemical reactors was later presented by Har-
mand and Dochain (2005). Sidhu et al. (2015) presented a dimensionless model for both
a standard and a step-feed cascade of equal sized reactors. The configuration used is
common in the ASP. They used Monod kinetics and included the decay of biomass. The
analysis showed that the substrate and biomass concentrations leaving the first reactor of
the cascade were the same as in the final reactor in a step-feed reactor. Previously, it has
been proposed that the step-feed reactor will improve the biological treatment of wastew-
ater. These results, surprisingly, showed that it is no better to use step-feed reactors if
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the feed streams are equally distributed than using only one single reactor (Sidhu et al.,
2015).

3 METHODS

In the following sections, the mathematical development will be presented. The problem
setup, the attempt on finding an analytical solution to them, and the numerical analysis
will be presented.

3.1 MATHEMATICAL DEVELOPMENT

In a completely mixed tank reactor where the influent and effluent flow rates (Q) are
equal, i.e. the volume V is constant, the rate of accumulation of biomass can be derived
from a simple mass balance (accumulation = input - output + production - consumption).
The influent has a substrate concentration Sin and a biomass concentration Xin. The
concentration of biomass in the outflow is equal to the concentration in the tank (X) since
the reactor is completely mixed. The change in biomass in the tank is given by

dX

dt
= µ(S)X +

Q(Xin–X)

V
(6)

As the biomass increase, the substrate decrease which commonly is expressed as

dX

dt
= −Y dS

dt
(7)

where Y is the yield coefficient. The yield coefficient is defined as the ratio between the
mass of cells formed and the mass of the consumed substrate. The yield coefficient can
be derived from Eq. 7 and can be expressed as

Y = −dX

dS
(8)

Applying a mass balance for the substrate concentration in the tank will give the expres-
sion for the change in substrate concentration

dS

dt
= −µ(S)

Y
X +

Q(Sin − S)

V
(9)

Expressions (6) and (9) do not take the decay of microorganisms into account. Introducing
a decay rate will change the net growth rate to µ−b. The dead biomass will either become
substrate, S, or inert biomass, Z (Fig. 1). The fractionation between them is determined
by fp. The derivation of an expression for the change in inert biomass follows the same
procedure as for Equations (6) and (9), i.e. a simple mass balance over the reactor with a
term which takes into account the amount of inert biomass that is created in the reactor.
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dX

dt
= (µ(S)− b)X +

Q(Xin–X)

V
, (10)

dZ

dt
= fpbX +

Q(Zin − Z)

V
, (11)

dS

dt
= −

(
µ(S)

Y
− (1− fp)b

)
X +

Q(Sin − S)

V
. (12)

3.1.1 N CSTRs in series

Equations (10)-(12) are valid for a single bioreactor. In this study, several bioreactors in
series will be analyzed and the equations must be adjusted to this case. The total volume
of the bioreactors, Vtot, is divided into N bioreactors, each with volume Vi (i = 1, 2, . . . ,
N ; Fig. 3).

Figure 3. N CSTRs in series

In the following we will assume X0 = Xin = 0, Z0 = Zin = 0 and S0 = Sin > 0. The
dynamics of the substrate and biomass concentrations in the i-th CSTR are given by

dXi

dt
= (µ(s)− b)Xi–

Q(Xi−1–Xi)

Vi
, (13)

dZi

dt
= fpbXi–

Q(Zi−1–Zi)

Vi
, (14)

dSi

dt
= −

(
µ(s)

Y
–(1− fp)b

)
Xi +

Q(Si−1 − Si)

Vi
(15)

respectively where Xi, Zi, Si and Vi are the biomass and substrate concentrations, and the
volume of the i-th CSTR, and fp is the fraction of the dead biomass that becomes inert.

In this study, we are only interested in the steady-state solutions. At steady-state, dXs/dt =
dZ/dt = dS/dt = 0, which yields

0 = (µ(Si)− b)Xi +
Q(Xi−1–Xi)

Vi
, (16)

0 = fpbXi +
Q(Zi−1–Zi)

Vi
, (17)

0 = −
(
µ(Si)

Y
–(1− fp)b

)
Xi +

Q(Si−1 − Si)

Vi
. (18)
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From Equation (18), and expression for Si can be derived

Si = Si−1 −
1

Y
(Xi −Xi−1)− b

QY
(1− (1− fp)Y )ViXi (19)

The recursive expression (19) can be used to derive an expression for N CSTRs in series

SN = Sin −
1

Y
XN −

b

QY
(1− (1− fp)Y )

N∑
n=1

VnXn (20)

The same procedure applied on Equation (16) yields the following expression for XN

XN = QN (Sin − S1)Y

V1(µ(S1)− (1− fp)bY )

N∏
i=2

1

Q− Vi(µ(Si)− b)
(21)

Inserting Equation (21) in Equation (20) will give the final expression for SN

SN = Sin −QN (Sin − S1)

V1(µ(S1)− (1− fp)bY )

N∏
i=2

1

Q− Vi(µ(Si)− b)
− ...

...− b

QY
(1− (1− fp)Y )

N∑
n=1

VnXn

(22)

Solving Equation (16) for the first CSTR and assuming no biomass in the influent (Xin =
0), the solutions are given by X1 = 0 or

µ(Sin) =
Q

V1

+ b (23)

The first condition, X1 = 0, is known as wash-out. Wash-out typically occurs if the
dilution rate Q/V is too high which causes too much biomass leaving the reactor and the
biomass concentration will reach zero as t→∞. To prevent wash-out, V1 must be greater
than the wash-out volume V min

1 , derived from Equation (23)

V1 > V min
1 =

Q

µ(Sin)− b
=

Q

µmax
Sin

Sin+KS
− b

. (24)

For a single CSTR at steady-state, the substrate and biomass concentrations are given by
the following expressions,

µ(S1) =
Q

V1

+ b⇒ S1 =

(
Q
V1

+ b
)
KS

µmax − Q
V1
− b

, (25)

X1 =
QY

Q+ V1b(1− (1− fp)Y )
(Sin − S1), (26)

Z1 =
V1

Q
fpbX1, (27)
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3.1.2 The PFR

In this section, the mathematical development of the steady-state equations for the PFR is
considered.The derivation follows Zambrano et al. (2015). The PFR can be approximated
as an infinite number of infinitesimally small CSTRs in series, each with volume ∆V
(Fig. 4).

Figure 4. Illustration of a CSTR followed by a PFR. The volume of the PFR is sliced in
an infinite number of infinitesimally small CSTRs with volume ∆V .

Consider a large number of CSTRs in series, where the volume of the first CSTR (V1)
is assumed to be large enough to avoid wash-out (V1 > V min

1 ). The remaining volume,
V −V1, is equal to the length of the reactor, hmax, times the cross-sectional area,A. Slicing
this volume into a large number of volumes ∆V will mimic a PFR (Fig. 4). Assuming
A is constant (i.e. not varying along h), the volume of each slice is ∆V = A∆h. If
considering a small interval (h, h+ ∆h), the conservation of mass for the substrate gives

d

dt

∫ h+∆h

h

AS(x, t)dx︸ ︷︷ ︸
mass increase per time unit

= QS(h, t)︸ ︷︷ ︸
flux in

−QS(h+ ∆h, t)︸ ︷︷ ︸
flux out

−...

...−
∫ h+∆h

h

A

[
µ(S)

Y
− (1− fp)b

]
Xdx︸ ︷︷ ︸

consumption per time unit

.

(28)

Dividing Equation (28) by A∆h and letting ∆h → 0 results in the following expression
for the dissolved substrate

∂S

∂t
+
Q

A

∂S

∂h
= −

(
µ(S)

Y
− (1− fp)b

)
X. (29)
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The same procedure applied for the active and inert biomass concentrations gives

∂X

∂t
+
Q

A

∂X

∂h
= (µ(S)− b)X, (30)

∂Z

∂t
+
Q

A

∂Z

∂h
= fpbX. (31)

At steady-state, ∂X/∂t = ∂Z/∂t = ∂S/∂t = 0, and Equations (29)-(31) can thus be
written as

Q

A

∂X

∂h
= (µ(S)− b)X, (32)

Q

A

∂Z

∂h
= fpbX, (33)

Q

A

∂S

∂h
= −

(
µ(S)

Y
− (1− fp)b

)
X, (34)

which are the ODEs that will be used to simulate the dynamics in the PFR. Note that
∂S/∂h can be both positive and negative (Eq. 34). This means that the substrate concen-
tration is not constantly decreasing along the PFR length, and there will be a minimum
substrate level. To get a decrease in the substrate concentration we should have

µ(S)

Y
− (1− fp)b > 0 (35)

Inserting Equation (5) in Equation (35) and solving for S gives the following expression,

Smin =
(1− fp)bY Ks

µmax − (1− fp)bY
(36)

which can be used to calculate the minimum substrate level that can be obtained in the
reactors.

3.2 ANALYTICAL SOLUTION

One of the objectives of this study was to find, if possible, an analytical solution to the
problems. Due to the complexity in Equation (22), an analytical solution was not possible
to find for the CSTR. In accordance with Zambrano et al. (2015), efforts were made to
find an analytical expression that could be used to optimize the CSTR+PFR. This was
also not possible.
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3.3 PROBLEM DESCRIPTION

The remaining objectives of the study was to conduct a numerical analysis of CSTRs
in series and a CSTR followed by a PFR, finding the optimal volumes given a certain
effluent substrate concentration, and to minimize the total volume needed to maximize
the reduction of the substrate concentration. This can be summarized in two minimizing
problems applied to two different configurations. The first configuration consists of N
CSTRs in series and the other one of one CSTR followed by a PFR. In the first minimizing
problem (denoted problem 1N or 1PFR), the total volume Vtot was given and the objective
was to minimize the effluent substrate level. In the second scenario (denoted 2N or 2PFR),
the objective was to minimize the total volume given a set substrate level in the effluent.
The mathematical description of these problems are further addressed in the following
sections.

3.3.1 Problem 1N

The configuration of problem 1N is N CSTRs in series. The objective was to minimize
the substrate level in the effluent of the N -th CSTR, SN , given a total volume Vtot.

minimize
(V1,...,VN )

{SN(V1, ..., VN)} , (37)

subject to

V1 > V min
1 , Vi > 0, i = 2, ..., N, and

N∑
i=1

Vi = Vtot (38)

3.3.2 Problem 2N

For problem 2N, the same configuration as in problem 1N was used. The objective was
to find the optimum volumes which minimize the total volume Vtot, given an effluent
substrate concentration Se < Sin. The problem can be summarized as:

minimize
(V1,...,VN )

{
Vtot =

N∑
i=1

Vi

}
, (39)

subject to

V1 > Vmin, Vi > 0, i = 2, ..., N, and SN(V1, ..., VN) = Se (40)

Note that the constrains are both linear (V1 > Vmin;Vi > 0) and nonlinear (SN(V1, ..., VN) =
Se).

3.3.3 Problem 1PFR

In this problem, the configuration consist of one CSTR followed by a PFR. The objective
was to find the optimal volume V1 of the CSTR which minimizes the effluent substrate

14



concentration, Se, of the PFR, given a total volume Vtot. To prevent wash-out, V1 has to
be greater than V min

1 .

minimize
(V1)

{Se(V1)} , (41)

subject to

V min
1 < V1 ≤ Vtot (42)

3.3.4 Problem 2PFR

In problem 2PFR, a configuration of one CSTR followed by a PFR was used. The ob-
jective was to find the optimal volumes V1 of the CSTR and VPFR of the PFR which
minimizes the total volume Vtot, given an effluent substrate concentration Se < Sin, i.e.

minimize
(V1)

{Vtot = V1 + VPFR = V1 + Ah} , (43)

subject to

V1 > Vmin, and S(h) = Se (44)

Note that the constrains are both linear (V1 > Vmin) and nonlinear (S(h) = Se).

3.4 NUMERICAL ANALYSIS

The solutions to the optimization problems were illustrated with four examples. The
examples were selected in accordance with Zambrano et al. (2015) to be able to compare
the results. All simulations were carried out in the platform Matlab R2016a. For full
codes, see Appendix A.

3.4.1 Matlab commands used

The problems that were to be solved were all minimizing problems and to solve them the
Matlab function fmincon was used. The function allows the user to set certain constraints,
assign initial values, and a function to be minimized (MathWorks, n.d. b).

The system of Equations (16) - (18), describing the dynamics in a CSTR, is a nonlin-
ear system that could be solved by using the Matlab command fsolve (MathWorks, n.d.
c). The equation system describing the dynamics in the PFR (Eq. 32 - 34), contains three
partial differential equations that were evaluated at steady-state, which means that they
are time-independent. Thus, they can be seen as ordinary differential equations (ODEs).
There are several numerical methods to solve ODEs. For this analysis ode45 was used.
ode45 is a common and versatile ODE solver. Two drawbacks is that it does not work
well for stiff problems or problems where high accuracy is demanded (MathWorks, n.d.
a). None of the problems in this study were stiff and the accuracy in ode45 was sufficient.
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3.4.2 Parameter and variable values

The parameter and variable values (Table 1) were kept constant through all simulations,
except from fp and b. The two variables were changed in order to analyze the influence
of the decay rate and the amount of the dead biomass that becomes inert.

Table 1. Parameter values used during the simulations.

Parameter Value
Vtot 1.10
A 0.428
Q 1.00
µmax 2.00
Y 0.800
KS 1.20
Sin 10.0
Xin 0.00
Zin 0.00
b 0.00-0.87
fp 0.00-1.00

The parameter values were chosen in accordance with Zambrano et al. (2015). The half
saturation constant, KS , and the maximum specific growth rate, µmax, both affect the
specific growth rate (Eq. 5). Higher values of KS lowers the specific growth rate, while
high value of the maximum specific growth rate will have the opposite effect. The yield
coefficient, Y , is the ratio between the mass of cells formed and the mass of the consumed
substrate. A higher value indicates that more biomass is formed for each unit of substrate
consumed.

The parameters b and fp affect the minimum substrate level that can be obtained in the
reactors (Smin, Eq. 36). Low values of fp in combination with high values of b will give
a higher Smin. Since b also affects the wash-out volume (Eq. 24), this must be considered
when evaluating the results. The higher b, the larger volume of the first reactor is required
to prevent wash-out. Values of b have been reported in the range 0.09-4.38 d−1 (Alex
et al., 2008; Henze et al., 1987). With the parameter values as above, the maximum value
of the decay rate, bmax, is 0.87 d−1, calculated by imposing V min

1 = Vtot and solving
Equation (24) for b.

3.4.3 Evaluating the response for a given V1

To illustrate how the substrate and biomass concentrations vary along a distance h (as
defined in Fig. 4) problem 1N and 1PFR were solved for N = 3, 5, 10. The volume of
the first CSTR, V1, had to be larger than the wash-out volume, V min

1 , calculated using
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Equation 24. Note that V min
1 varies depending on b. In this example b = 0 or b = 0.1. The

wash-out volume when b = 0.1 is 0.593 and when b = 0 it is 0.560. To prevent wash-out
for both values of b, the larger wash-out volume must be used. Therefore V1 was selected
as 1.2V min

1 (b = 0.1) = 0.712.

For the case with N CSTRs in series, the remaining volume was divided intoN−1 equally
sized volumes (V2 = ... = VN = (Vtot − V1)/(N − 1)). The corresponding substrate and
biomass levels in the first CSTR (S1, X1 and Z1) were calculated using Equations (25) -
(27). These values are the influent to the following CSTR or PFR. The equation systems
(16) - (18) and (32) - (34) were solved using fsolve and ode45 respectively.

3.4.4 Optimal design for V1

The objective of problem 1N and 1PFR was to minimize the effluent substrate level, while
optimizing the volume, under the constraints that the total volume Vtot = 1.1. In order to
compare the solutions of problems 1N and 1PFR, Se was calculated for different values of
V1, from V min

1 to Vtot, for both configurations. For problem 1N, V2, ..., VN were optimized
using fmincon. Problem 1PFR has a configuration of one CSTR followed by a PFR. The
volume of the PFR was set to VPFR = Vtot − V1. This was done for different values of b
and fp.

To create comprehensive results, another simulation where all volumes were optimized
to minimize Se was run. The optimal volume of the first CSTR, V opt

1 , and the corre-
sponding effluent substrate level, Se(V

opt
1 ), was found for b = [0.00 0.87] and fp = [0.00

1.00]. The maximum value of the decay rate, bmax, is 0.87 to make sure that the wash-out
volume does not exceed the total volume.

3.4.5 Optimal and suboptimal design for N CSTRs

A numerical analysis of the optimal and suboptimal design for N CSTRs was carried out.
Two different optimization procedures were used:

(a) V1 = V ∗
1 , V2 = ... = VN = (Vtot − V ∗

1 )/(N − 1)

(b) V1 to VN were optimized

where V ∗
1 is the optimal volume of the CSTR found by solving problem 1PFR (i.e. V opt

1

for the CSTR+PFR). This was done for different values of b and fp in order to see the
effect of the decay rate. fmincon was used to find the optimal volumes in (b), with the
objective function and constraints as in Equation (37) and (38).

3.4.6 Optimal design for a given effluent substrate concentration

Problems 2N and 2PFR were evaluated by comparing the results from the two configu-
rations. The total volume required for a CSTR followed by a PFR, Vopt, was calculated
by solving problem 2PFR. The total volume required for N CSTRs in series, V (N), was
calculated by solving problem 2N, with N = 2, 3, 4, 5. This was done for different re-
quirements on the effluent substrate level.
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The problems were both solved using different values of b and fp (b = 0.00, 0.10, 0.25,
0.40 and fp = 0.00, 0.10, 0.40, 0.80). The requirements on Se was expressed as a fraction
of Sin, with values ranging from 1% to 100% of Sin.

In this problem, it was important to also evaluate the minimum substrate level, Smin,
that can be obtained in the reactors. Smin was calculated for all values of b and fp using
Equation (36), shown in Table 2.

Table 2. Smin for different b and fp. Smin exceeds 1% of Sin when (1) b = 0.25, fp = 0.10,
(2) b = 0.40, fp = 0.10, and (3) b = 0.40, fp = 0.40

b

fp 0.10 0.40 0.80

0.10 0.0448 0.0295 0.00968
0.25 0.119 0.0766 0.0245
0.40 0.202 0.127 0.0397

Note that with Sin = 10, 1% of Sin is 0.10 and that Smin > 0.10 when (1) b = 0.25,
fp = 0.10, (2) b = 0.40, fp = 0.10, and (3) b = 0.40, fp = 0.40. When b = 0.4 and
fp = 0.1, Smin > 2% of Sin as well. Since Smin is the lowest value Se can be assigned,
the requirements on Se ranged from 1.1Smin-Sin for these three cases.

4 RESULTS

4.1 RESPONSE FOR A GIVEN V1

The analysis of the response for a given V1 showed the behavior throughout the reactors.
The configuration of N CSTRs converges towards the configuration of one CSTR fol-
lowed by a PFR as N increase (Fig. 5). The choice of N has the biggest impact on the
substrate level towards the end of the bioreactors (h→ hmax).

When introducing a decay rate, b > 0, the biomass concentration decreases and the sub-
strate level increases. The choice of fp also affects the results. It changes the ratio between
the active and inert biomass. The impact on the substrate level is not as obvious, but it is
slightly lower when fp is higher (Fig. 5).

18



0 0.2 0.4 0.6 0.8 1

h

0

0.5

1

1.5

2

2.5

3

3.5

4

S
(h

)

b = 0, f
p
 = 0

N = 3
N = 5
N = 10
CSTR+PFR

0 0.2 0.4 0.6 0.8 1

h

4.5

5

5.5

6

6.5

7

7.5

8

X
(h

)

b = 0, f
p
 = 0

N = 3
N = 5
N = 10
CSTR+PFR

0 0.2 0.4 0.6 0.8 1

h

0

0.25

0.5

0.75

1.0

Z
(h

)

b = 0, f
p
 = 0

N = 3
N = 5
N = 10
CSTR+PFR

0 0.2 0.4 0.6 0.8 1

h

0

0.5

1

1.5

2

2.5

3

3.5

4

S
(h

)

b = 0.1, f
p
 = 0.1

N = 3
N = 5
N = 10
CSTR+PFR

0 0.2 0.4 0.6 0.8 1

h

4.5

5

5.5

6

6.5

7

7.5

8

X
(h

)

b = 0.1, f
p
 = 0.1

N = 3
N = 5
N = 10
CSTR+PFR

0 0.2 0.4 0.6 0.8 1

h

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Z
(h

)

b = 0.1, f
p
 = 0.1

N = 3
N = 5
N = 10
CSTR+PFR

0 0.2 0.4 0.6 0.8 1

h

0

0.5

1

1.5

2

2.5

3

3.5

4

S
(h

)

b = 0.1, f
p
 = 0.4

N = 3
N = 5
N = 10
CSTR+PFR

0 0.2 0.4 0.6 0.8 1

h

4.5

5

5.5

6

6.5

7

7.5

8

X
(h

)

b = 0.1, f
p
 = 0.4

N = 3
N = 5
N = 10
CSTR+PFR

0 0.2 0.4 0.6 0.8 1

h

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Z
(h

)

b = 0.1, f
p
 = 0.4

N = 3
N = 5
N = 10
CSTR+PFR

Figure 5. Response for V1 = 0.712. Substrate, S, biomass, X , and inert biomass, Z, in
each CSTR (for N = 2, 5, 10, dashed black lines) or as functions of the position, h, in
the PFR (for the CSTR+PFR, red line) for different decay rates, b, and fractions between
inert biomass and substrate, fp.

4.2 OPTIMAL DESIGN FOR V1

The effluent substrate level, Se, for N CSTRs in series converges towards the one for the
CSTR+PFR (red line) asN increase. The optimal volume for V1 (black dots forN CSTRs
and asterisk for CSTR+PFR) is smaller when the number of CSTRs increase (Fig. 6).

The decay rate has quite a large influence on the results, as can be seen in Figure 6.
The higher the decay rate, the higher Se and V opt

1 . One can also see that the difference
between the configurations is less prominent as b increases. Note also that V opt

1 moves
closer to the total volume. The influence from fp is not as obvious as the one from b. It
has only a small influence on Se and V opt

1 , barely noticeable in Figure 6.

19



0.6 0.7 0.8 0.9 1 1.1
V

1

10-2

10-1

100

101

S
e

b = 0, f
p
 = 0

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

0.6 0.7 0.8 0.9 1 1.1
V

1

10-2

10-1

100

101

S
e

b = 0.1, f
p
 = 0.1

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

0.6 0.7 0.8 0.9 1 1.1
V

1

10-2

10-1

100

101

S
e

b = 0.1, f
p
 = 0.4

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

0.6 0.7 0.8 0.9 1 1.1
V

1

10-2

10-1

100

101

S
e

b = 0.1, f
p
 = 0.8

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

0.6 0.7 0.8 0.9 1 1.1
V

1

100

101

S
e

b = 0.25, f
p
 = 0.1

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

0.6 0.7 0.8 0.9 1 1.1
V

1

100

101

S
e

b = 0.25, f
p
 = 0.4

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

0.6 0.7 0.8 0.9 1 1.1
V

1

100

101

S
e

b = 0.25, f
p
 = 0.8

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

0.7 0.8 0.9 1 1.1
V

1

100

101

S
e

b = 0.4, f
p
 = 0.1

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

0.7 0.8 0.9 1 1.1
V

1

100

101

S
e

b = 0.4, f
p
 = 0.4

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

0.7 0.8 0.9 1 1.1

V
1

100

101

S
e

b = 0.4, f
p
 = 0.8

N = 2
N = 3
N = 5
N = 10
CSTR+PFR

V1, opt
CSTR+PFR

V1, opt
N CSTRs

Figure 6. The optimal volume of the first CSTR, V opt
1 , for different configurations and

different decay rates, b, and fractions between inert biomass and substrate, fp. Note that
each row have different axes.

The behavior pointed out in Figure 6 is even more visible in Figure 7. There is a certain
value of b where only the first CSTR is needed (V opt

1 = Vtot). This value varies between
0.53-0.54 (Table 3). Although only illustrated for the CSTR+PFR in this report, the same
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behavior was seen for N CSTRs in series as well. The influence from fp is small but can
be seen in Figure 7 where both V opt

1 and Se(V
opt

1 ) increase when fp increases.

Figure 7. The optimal volume of the first CSTR, V opt
1 , and the effluent substrate level,

Se(V
opt

1 ), for different decay rates, b, and fractions between inert biomass and substrate,
fp, for a CSTR+PFR.

Table 3. Break values of b

Configuration bbreak

2 CSTRs 0.54
5 CSTRs 0.54
CSTR+PFR 0.53

The ratio between the optimal volume of the first reactor for CSTRs in series and the
CSTR+PFR, and the ratio between the corresponding effluent substrate levels were cal-
culated. Both ratios are greater than one for almost all values of b and fp for both 2 and
5 CSTRs in series (Fig. 8 and 9). The CSTR+PFR is more effective than the CSTRs in
series when b is low since it requires a smaller first volume and still generates a lower sub-
strate level in the effluent. For b > bbreak, there is no difference between the configurations
(ratio = 1).
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Figure 8. The ratio between the optimal volume of the first reactor, V opt
1 , for N = 2 (left)

or 5 (right) CSTRs in series and CSTR+PFR for different decay rates, b, and fractions
between inert biomass and substrate, fp.

Figure 9. The ratio between the effluent substrate level, Se, for N = 2 (left) or 5 (right)
CSTRs in series and CSTR+PFR for different decay rates, b, and fractions between inert
biomass and substrate, fp.

4.3 OPTIMAL AND SUBOPTIMAL DESIGN FOR N CSTRs

The different configurations used for this example give similar results. When N is in-
creasing, configuration (a) converges to (b) (Fig. 10). As b increases, both the difference
between the configurations (Fig. 11) and the variation along N decrease. The latter can
be seen in Figure 10, where the relative difference from low to high N is decreasing when
b increases. The same behavior has previously been shown in Figure 6.

From Figure 10 one can also see that the overall substrate level is increasing when b
increases. Increasing fp, on the other hand, cause a decrease of Se (Fig. 10). An inter-
esting effect that fp has on the substrate levels is that for low N , the difference between
configuration (a) and (b) decreases with increasing fp. However, for high N , the differ-
ence between the configurations increases with increasing fp (Fig. 12).
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This analysis have shown that the number of CSTRs will have less influence on the results
when the decay rate increases, and that only optimizing the first volume of the bioreactors
is a good approximation of the optimal design, especially when b is high.
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Figure 10. Optimal and suboptimal design for N CSTRs in series for two different con-
figurations: (a) V1 = V ∗

1 , V2 = ... = VN , and (b) V1 to VN are optimized, evaluated for
different decay rates, b, and fractions between inert biomass and substrate, fp
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Figure 11. Difference between the substrate level from configuration (a) and (b), divided
by Sin. b is varying between 0.0-0.50 with a stepsize of 0.01 while fp was kept constant
at 0.40.

Figure 12. Difference between the substrate level from configuration (a) and (b), divided
by Sin. fp is varying between 0.0-1.0 with a stepsize of 0.01 while b was kept constant at
0.25.

4.4 OPTIMAL DESIGN FOR A GIVEN EFFLUENT SUBSTRATE CONCEN-
TRATION

The optimal volumes achieved when solving problems 2PFR and 2N are denoted Vopt
and V (N) respectively. Results are presented as the ratio between the solutions. The
ratio Vopt/V (N) increases as N increases, which means that the solution to problem 2N
converges to the solution to problem 2PFR when N increases (Fig. 13). When the re-
quirements are strict (i.e. the ratio between Se and Sin is low) there is quite a big differ-

24



ence between the solutions. With less strict requirements, the difference is less prominent.

The variables b and fp affect the results in opposite ways. As b increases, Vopt/V (N)
decreases, especially for low values on N , while increasing fp leads to an increase of
Vopt/V (N). Furthermore, the variation between N = 2 and N = 5 increases as b increases
(lines further apart), while it decreases as fp is increased. Once again, the effect from this,
is less prominent with less strict requirements on the substrate effluent level.

Note that in Figure 13, Smin is marked with a red, dashed line when Se < Smin. The
values of Smin can be found in Table 3.
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Figure 13. Minimum total volume required for a given substrate effluent level, Se. The
red, dashed lines shows the minimum possible substrate level Smin for the cases when the
required Se < Smin.
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5 DISCUSSION

In this study, a system of differential equations was used to describe the dynamics of the
substrate, biomass and inert biomass concentrations in bioreactors. The objective of the
study was to extend the work by Zambrano et al. (2015) by adding the biomass decay
rate and one more ODE to describe the inert biomass. A numerical analysis of several
CSTRs in series and of one CSTR connected to a PFR has been carried out. It was done
by solving two optimization problems: (1) minimize the effluent substrate concentration
by optimize the volumes, given a total volume, and (2) minimize the total volume needed
to obtain a certain substrate conversion. The optimization problems were solved and il-
lustrated with four examples. The configuration of N CSTRs in series was compared to a
CSTR followed by a PFR.

The study showed that the solution of N CSTRs in series converges to the solution of
the CSTR+PFR in the first optimization problem. With no decay of biomass, the results
provided here, are the same as was found by Zambrano et al. (2015). The decay rate af-
fects the results by lessen the difference between the configurations, i.e. the solutions are
almost the same when the decay rate is high. Not surprisingly, the decay rate will cause a
higher effluent substrate level and a larger optimal minimum volume. Introducing a decay
rate causes biomass to die, and either becomes substrate or inert biomass. With a higher
amount becoming substrate (i.e. lower fp), the effluent substrate level increases. From all
minimizing problems, it was found that b has a bigger impact on the results than fp has.

5.1 RESPONSE FOR A GIVEN V1

The steady-state solution forN CSTRs converges towards the solution for the CSTR+PFR
for a certain V1. It was also found that the substrate level decreases along the reactors
while the biomass concentrations increased (Fig. 5). This analysis was mostly done to
illustrate the process in the reactors and to determine if the system was operating in the
desired way.

5.2 OPTIMAL DESIGN FOR V1

Evaluating the response for different V1 showed that the optimal volume and the efflu-
ent substrate level decreases as N decreases, once again showing that the solution for N
CSTRs converges to the one for the CSTR+PFR. The configuration used had less impor-
tance when b increased (Fig. 6). For a certain value on b, there was no longer any need
for more than one CSTR, no matter what configuration was used (Table 3). This can be
related to the wash-out volume, which is depending on the decay rate (Eq. 24). With a
high decay rate, a large first volume is needed to prevent wash-out, thus the remaining
volume is quite small and will not contribute to the conversion of substrate in any large
extent. For the case with the CSTR+PFR, this means that only a CSTR is needed when b
is large enough and the benefits of the PFR will therefore be slightly lost. If V1 is large for
the case of N CSTRs in series, the remaining volume will be very small. Slicing it up in
N−1 small volumes (as in Fig. 4) will cause it to mimic a PFR, especially ifN is large as
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well. For example, when b = 0, more than 10 CSTRs in series will be needed to mimic the
CSTR+PFR, but for b = 0.54 there is practically no difference between the configurations
even for N = 2. In conclusion, when b is large, a large first volume is needed and the
difference between N CSTRs and the CSTR+PFR is very small (Fig. 6 and 7).

Ideally, the optimal volume of the first reactor should be smaller for the configuration
CSTR+PFR than for N CSTRs in series, no matter what b and fp was used. Or in other
words, the ratio between the optimal volumes for the N CSTRs and the CSTR+PFR
should have been greater than or equal to one for all values of b and fp. However, prob-
ably due to limitations in the numerical representation in Matlab, one can see that this is
not the case (Fig. 8). Even though the ratio is less than one for some values of b and fp,
it is very close to one, meaning that they are practically the same. As has been proven
before (e.g. Bischoff (1966)), the configuration of one CSTR followed by a PFR is in a
sense the boundary of N CSTRs in series, and it should thereby not be possible to have a
ratio less than one.

5.3 OPTIMAL AND SUBOPTIMAL DESIGN FOR N CSTRs

The optimal and suboptimal design of N CSTRs in series was studied. It was found was
that optimizing all volumes of the CSTRs will give a lower effluent substrate level, es-
pecially when N is small. As N was increased, the difference between only optimizing
the first volume and optimizing all volumes decreased. These results indicate that a good
approximation to the optimal design is to only optimize the first volume and keep the
remaining volumes equally sized. The results are in agreement with Hill and Robinson
(1989) and de Gooijer et al. (1996). The parameters b and fp have opposite effect on the
results. While the effluent substrate level increases as b increases, it decreases when fp
increases (Fig. 10). The impact from b is bigger when N is small, which subsequently
indicates that the difference between optimizing all volumes and only optimizing the first
volume is less when b increases (Fig. 11). Thus, for a high decay rate, it is an even more
accurate approximation for the optimal design of CSTRs in series to only optimize the first
volume and divide the remaining volume equally between the rest of the reactors. This
can be related to what was found when finding the optimal volume V opt

1 for N CSTRs
and the CSTR+PFR. V opt

1 for N CSTRs are equal to V opt
1 for the CSTR+PFR when b is

large. This means that the first volume of the two configurations used in Example 2.4.5
will be approximately the same when b is large. Optimally designing the remaining vol-
umes or just distributing them equally will then have less impact on the effluent substrate
level. The overall substrate level in the reactors decreases when increasing fp, which was
expected. Increasing fp causes a bigger difference between the optimization procedures if
N is large, while if N is small, the difference decreases (Fig. 12). This can be explained
by once again considering the size of V1. When V1 for configuration (b) goes towards V ∗

1

(i.e. when b is high), the volume distribution for configuration (a) converges towards (b)
when N = 2. With V1 for configuration (b) close to V ∗

1 , the optimization of the remaining
volumes will have bigger effect on the effluent substrate level when N is large. The effect
is visible when using more than two CSTRs, but is more prominent when N increases
(N → 10 in this study; Fig. 10).
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5.4 OPTIMAL DESIGN FOR A GIVEN EFFLUENT SUBSTRATE CONCEN-
TRATION

The second optimization problem was evaluated by comparing the solutions to problem
2N with the one from problem 2PFR. The total volume needed for different requirements
on the effluent substrate level was found for the two configurations. Results show that
the ratio between the configurations is closer to one for large N , meaning that the total
volumes of both configuration is similar. Increasing b leads to a lower ratio and increas-
ing fp leads to a higher ratio (Fig. 13). These results might seem somewhat surprising
since the previous examples have shown that increasing b causes the two configurations
to converge towards each other (see e.g. Fig. 6). The analysis did show that a larger total
volume is needed when b increases, but the volume for the CSTRs in series increases more
than for the CSTR+PFR. For previous examples, there has been an upper limit of the total
volume, which causes both configurations to reach the boundary when b increases. In this
example, we have both stricter (lower) Se and no upper boundary on the total volume,
which makes it possible to reach even higher volumes. In conclusion, for this analysis, a
CSTR+PFR will always be superior to N CSTRs in series for strict effluent requirements.
For the less stringent requirements, the configurations do indeed become more alike. Fur-
thermore, when the effluent substrate level is 100% of Sin, there is no substrate reduction
in the reactors, and the total volume is the same for both configurations.

5.5 ASSUMPTIONS AND PARAMETER VALUES

Results from this study show that given a total reactor volume, the effluent substrate level
can be reduced by dividing the volume in several smaller volumes. It was also shown
that a fairly accurate approximation to the optimal design of bioreactors in series is to
optimally design the first volume and equally distribute the following volumes. However,
this study was conducted under three assumptions: (1) one main biomass consumes one
main substrate, (2) the biological parameters do not change with the liquid temperature,
and (3) the oxygen demand was fulfilled. Including heterogeneous biomass populations
and substrates or a model to account for the oxygen and temperature dependence could
be a way to make the model more realistic.

With the parameter setup used in this study, using CSTRs in series is not always superior
to a single CSTR, which have been shown by de Gooijer et al. (1996) as well. Since the
parameter values will affect the optimal design and the substrate conversion, accurate and
plant specific parameters should be used if this method were to be implemented in prac-
tice. As was shown, the decay rate will strongly affect the results and there is a critical
limit for b above which only one CSTR was needed no matter which configuration was
used (Table 3). It would have been interesting to see how the other parameters, especially
the growth rate, affect bbreak. The relation between the growth rate and the decay rate
is what determines the biomass, and thus the substrate levels, in the reactors and it will
probably affect bbreak. The total volume will affect bbreak in such a way that a larger vol-
ume gives a higher bbreak. Changing the parameter values will also affect the results from
the second optimization problem (2N and 2PFR). The minimum substrate level that can
be obtained in the reactors are related to the parameters in the Monod function, where an
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increase of the half saturation constant would give a higher Smin and an increase of the
maximum specific growth rate would decrease Smin. Given that the general shape of the
curves in Figure 13 is not strongly affected by b and fp, and that Smin was lower than the
required Se for most of the cases, altering KS and µmax will probably only change the
results for the three cases where the required Se < Smin. The actual values retrieved from
the study will not be the same for another parameter setup, but one would probably see
the same behavior as for this study.

6 CONCLUSIONS

The study has shown that the differential equation systems presented can be used to opti-
mally distribute the bioreactor volumes for a configuration of N CSTRs in series and of
a CSTR+PFR so to (1) minimize the effluent substrate level given a total volume, or (2)
minimize the total volume needed to fulfill a certain requirement on the effluent substrate
level. The model can be used to optimally divide a total volume into smaller ones and
thereby increasing the substrate conversion, something that could be of interest in e.g.
existing wastewater treatment plants with restricted space. To get a fairly accurate ap-
proximation of the optimal design, it is possible to use the approach for the CSTR+PFR
to find the optimal design of the first volume, and then distribute the remaining volume
equally. This approach would be more computational efficient and less time consuming
than optimizing all volumes, but still provide fairly accurate results.

One of the most interesting result from the study is that there are situations where only
a single CSTR is needed. An extension of this study could be to evaluate how bbreak is
affected by changing parameter values, insight that could help when deciding on if, and
when, multiple CSTRs are needed. Other possible extensions would be to further develop
the model to include temperature dependence, other kinds of biomass and substrates, a
model for the oxygen demand, or implement it for the ASP.
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APPENDIX A - MATLAB FUNCTIONS AND SCRIPTS

FUNCTIONS

@diff eqn - Differential equations for the CSTR

1 function F = diff_eqn(x)
2

3 global mumax Ks Y fp b Q v Sin Xin Zin
4

5 % x = [S X Z];
6

7 F(1) = -(((mumax*x(1)/(Ks+x(1)))/Y)-((1-fp)*b))*x(2)+(Q/v)*(Sin-x
(1));

8 F(2) = (((mumax*x(1)/(Ks+x(1)))-b)*x(2))+((Q/v)*(Xin-x(2)));
9 F(3) = (fp*b*x(2))+((Q/v)*(Zin-x(3)));

10

11 end

@PFR - ODEs for the PFR

1 function [G] = PFR(˜,x)
2

3 global mumax Ks Y fp b Q Ar
4

5 % x = [S X Z];
6 % G = [dS/dh dX/dh dZ/dh];
7

8 G(1,1) = -(((mumax*x(1)/(Ks+x(1)))/Y)-((1-fp)*b))*Ar*x(2)/Q;
9 G(2,1) = (Ar*((mumax*x(1)/(Ks+x(1)))-b)*x(2))/Q;

10 G(3,1) = (fp*b*Ar*x(2))/Q;
11

12 end

@CSTR V given - Used for problem 1N

1 function [Se] = CSTR_V_given(VV)
2

3 global Q mumax Y b fp Ks Sin Xin Zin v
4

5 Sin = 10;
6 Xin = 0;
7 Zin = 0;
8 n = length(VV);
9

10 % Calculating S in the first CSTR
11 S1 = (((Q/VV(1))+b)*Ks)/(mumax-(Q/VV(1))-b);
12 X1 = Q*(Sin1-S1)*Y/(Q+(VV(1)*b*(1-((1-fp)*Y))));
13 Z1 = ((VV(1)/Q)*fp*b*X1)+Zin;
14 Sin = S1;
15 Xin = X1;
16 Zin = Z1;
17
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18 % Calculating S for the rest of the CSTRs
19 for j=2:n
20

21 v = VV(j);
22 x = [Sin, Xin, Zin];
23

24 Z = fsolve(@diff_eqn, x);
25

26 Sin = Z(1);
27 Xin = Z(2);
28 Zin = Z(3);
29

30 Sstat(j) = Sin;
31 Xstat(j) = Xin;
32 Zstat(j) = Zin;
33

34 end
35

36 Se = (Sstat(n)); % Output = substrate level in the effluent
37

38 end

@PFR V given - Used for problem 1PFR

1 function [Se] = PFR_V_given(VV)
2

3 global Q mumax Y b fp Ks Sin Xin Zin Ar
4

5 Sin = 10;
6 Xin = 0;
7 Zin = 0;
8

9 % Calculating S in the CSTR
10 S1 = (((Q/VV(1))+b)*Ks)/(mumax-(Q/VV(1))-b);
11 X1 = Q*(Sin-S1)*Y/(Q+(VV(1)*b*(1-((1-fp)*Y))));
12 Z1 = ((VV(1)/Q)*fp*b*X1)+Zin;
13

14 % Levels in effluent from CSTR = level in influent to PFR
15 Sin = S1;
16 Xin = X1;
17 Zin = Z1;
18

19 % Calculating Se from PFR
20 h0 = 0;
21 h = VV(2)/Ar;
22 hspan = [h0 h];
23 x0 = [Sin, Xin, Zin];
24 [h,X] = ode45(@PFR,hspan,x0);
25

26 % Output = substrate level in the effluent of the PFR
27 Se = X(end,1);
28 h = h;
29

30 end
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@volume - Used for problems 2N and 2PFR

1 function [V] = volume(VV)
2

3 V = sum(VV);
4

5 end

@nlcon1 - Non-linear constraints for problem 2PFR

1 function [C,Ceq] = nlcon1(VV)
2

3 global Q mumax Y b fp Ks Sin Xin Zin Se Ar
4

5 Sin = 10; % Substrate level in the influent
6 Xin = 0; % Biomass level in the influent
7 Zin = 0; % Inert biomass level in the influent
8

9 % Calculating Se from CSTR
10 S1 = (((Q/VV(1))+b)*Ks)/(mumax-(Q/VV(1))-b);
11 X1 = Q*(Sin-S1)*Y/(Q+(VV(1)*b*(1-((1-fp)*Y))));
12 Z1 = ((VV(1)/Q)*fp*b*X1)+Zin;
13

14 Sin = S1;
15 Xin = X1;
16 Zin = Z1;
17

18 % Calculating S(h) for PFR
19 h0 = 0;
20 h = VV(2)/Ar;
21 hspan = [h0 h];
22 x0 = [Sin, Xa_in, Xi_in];
23 [˜,X] = ode45(@PFR,hspan,x0);
24 Se_PFR = X(end,1); % Output = substrate level in the effluent of the

PFR
25 C = [];
26 Ceq = Se_PFR - Se;
27

28 end
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@nlcon2 - Non-linear constraints for problem 2N

1 function [C,Ceq] = nlcon2(VV)
2

3 global Q mumax Y b fp Ks Sin Xin Zin v Se
4

5 Sin = 10; % Substrate level in the influent
6 Xin = 0; % Biomass level in the influent
7 Zin = 0; % Inert biomass level in the influent
8

9 n = length(VV);
10

11 % Calculating S in the first CSTR
12 S1 = (((Q/VV(1))+b)*Ks)/(mumax-(Q/VV(1))-b);
13 X1 = Q*(Sin-S1)*Y/(Q+(VV(1)*b*(1-((1-fp)*Y))));
14 Z1 = ((VV(1)/Q)*fp*b*X1)+Zin;
15 Sin = S1;
16 Xin = X1;
17 Zin = Z1;
18

19 % Calculating S for the rest of the CSTRs
20 for j = 2:n
21

22 v = VV(j);
23 x = [Sin, Xa_in, Xi_in];
24 Z = fsolve(@diff_eqn, x);
25

26 Sin = Z(1);
27 Xin = Z(2);
28 Zin = Z(3);
29 Sstat(j) = Sin;
30 Xstat(j) = Xin;
31 Zstat(j) = Zin;
32

33 end
34

35 C = [];
36 Ceq = Sstat(end) - Se;
37

38 end
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SCRIPT TO GENERATE DATA FOR FIGURE 4

1 % Response for a given V1
2 % The program calculates the substrate level in each CSTR/along h. V1

is fixed at 1.2*V1min for b = 0.1.
3

4 global Q b mumax Sin Ks N Vtot Vr Y fp Xin Zin v Ar
5

6 Ar = 0.428; % Area
7 Vtot = 1.1; % Total volume
8 Q = 1; % Inflow = outflow
9 mumax = 2; % Maximum specific growth rate

10 Y = 0.8; % Yield factor
11 b = 0.1; % Decay rate
12 fp = 0.4; % Amount that becomes inert
13 Ks = 1.2; % Half saturation constant
14 Sin = 10; % Substrate level in the influent
15 Xin = 0; % Biomass level in the influent
16 Zin = 0; % Inert biomass level in the influent
17 Sstat = zeros(3,10);
18 Xstat = zeros(3,10);
19 Zstat = zeros(3,10);
20

21 % Finding V1
22 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b); % Wash-out volume
23 V1 = 1.2*V1min; % If b = 0, use V1 = 0.711864407;
24

25 % Calculating the substrate level for N CSTR
26 i = 1;
27 for N = [3, 5, 10];
28

29 j = 1;
30

31 Vr = (Vtot-V1)/(N-1);
32 V = Vr.*ones(N,1);
33 V(1) = V1;
34

35 % Calculating S for the first CSTR and storing values as input to
the next CSTR

36 Sin = 10;
37 Xin = 0;
38 Zin = 0;
39 S1 = (((Q/V(1))+b)*Ks)/(mumax-(Q/V(1))-b);
40 X1 = Q*(Sin-S1)*Y/(Q+(V(1)*b*(1-((1-fp)*Y))));
41 Z1 = ((V(1)/Q)*fp*b*X1)+Zin;
42 Sin = S1;
43 Xin = X1;
44 Zin = Z1;
45 Sstat(i,j) = Sin;
46 Xstat(i,j) = Xin;
47 Zstat(i,j) = Zin;
48

49 % Calculating S for the rest of the CSTRs
50 n = length(V);
51
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52 for j=2:n
53

54 v = V(j);
55 x = [Sin, Xin, Zin];
56 Z = fsolve(@diff_eqn, x);
57

58 Sin = Z(1);
59 Xin = Z(2);
60 Zin = Z(3);
61 Sstat(i,j) = Sin;
62 Xstat(i,j) = Xin;
63 Zstat(i,j) = Zin;
64

65 end
66

67 h(1:N,i) = 0:Vr/Ar:(Vtot-V1)/Ar;
68 i = i+1;
69

70 end
71

72 % Calculating the substrate level in the CSTR+PFR
73 VCSTR = 1.2*V1min; % If b = 0, VCSTR = 0.711864407;
74 VPFR = Vtot-VCSTR;
75

76 % Calculating Se from the CSTR
77 Sin = 10;
78 Xin = 0;
79 Zin = 0;
80 S1 = (((Q/VCSTR)+b)*Ks)/(mumax-(Q/VCSTR)-b);
81 X1 = Q*(Sin-S1)*Y/(Q+(V(1)*b*(1-((1-fp)*Y))));
82 Z1 = ((VCSTR/Q)*fp*b*X1)+Zin;
83

84 % Se from CSTR = input to PFR
85 Sin = S1;
86 Xin = X1;
87 Zin = Z1;
88

89 % Solve ODEs to find S(h)
90 h0 = 0;
91 hPFR = VPFR/Ar;
92 hspan = linspace(h0,hPFR,100);
93 x0 = [Sin, Xin, Zin];
94 [hPFR_vec,X] = ode45(@PFR,hspan,x0);
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SCRIPT TO GENERATE DATA FOR FIGURE 5

1 % Optimal design for V1
2 % The program calculates the effluent substrate level for V1 = V1min:

Vtot. The volume V1 (volume of CSTR) is fixed at given value
3

4 % Objective function: PFR_V_given
5 % Linear constraints: V1 > V1min
6 % Vi > 0
7 % sum(V) = Vtot
8 % Lower and upper bound: 0 < V2,...,VN < Vtot
9

10 options = optimset(’TolCon’,1e-14,’TolFun’,1e-14,’DiffMinChange’, 0, ’
Algorithm’, ’interior-point’);

11

12 global Q b mumax Sin Ks Y fp Xa_in Xi_in Ar Vtot
13

14 Ar = 0.428; % Cross-sectional area of the PFR
15 Vtot = 1.1; % Total volume
16 Q = 1; % Inflow = outflow
17 mumax = 2; % Maximum specific growth rate
18 Y = 0.8; % Yield factor
19 b = 0.0; % Decay rate
20 fp = 0.0; % Amount that becomes inert
21 Ks = 1.2; % Half saturation constant
22 Sin = 10; % Substrate level in the influent
23 Xin = 0; % Biomass level in the influent
24 Zin = 0; % Inert biomass level in the influent
25

26

27 % Evaluating response from V1 for N CSTRs, where N = [2, 3, 5, 10]
28 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b); % Wash-out volume
29

30 k = 1;
31

32 for N = [2,3,5,10]
33

34 i = 1;
35

36 for V1 = V1min:0.01:Vtot
37

38 % Setting conditions for fmincon
39 % Sum(V1,...,VN) = Vtot
40 % V1 = V1 (V1 fixed at chosen value, V2,...,VN optimized)
41 Aeq = zeros(N);
42 Aeq(1,:) = 1;
43 Aeq(2,1) = 1;
44 Beq = zeros(N,1);
45 Beq(1) = Vtot;
46 Beq(2) = V1;
47

48 % 0 < V2,...,VN < Vtot; V1 > V1min
49 lb = zeros(1,N); lb(1) = V1min;
50 ub = Vtot*ones(1,N);
51
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52 % Creating vector V with initial guesses
53 Vr = (Vtot-V1)/(N-1);
54 V = Vr.*ones(N,1);
55 V(1) = V1;
56

57 % Minimizing function CSTR_V_given with conditions as above
58 [volumes(i,1:N),fval(i)]=fmincon(@CSTR_V_given,V,[],[],Aeq,Beq,

lb,ub,[],options);
59

60 i = i+1;
61 end
62

63 % Store the volumes and corresponding substrate levels
64 vol1plot(:,k) = (volumes(1:end,1));
65 Seplot(k,:) = fval;
66

67 k = k+1;
68

69 end
70

71 % Find V1opt for N CSTRs
72 Sin = 10;
73 Xin = 0;
74 Zin = 0;
75

76 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b);
77

78 i = 1;
79

80 for N = [2,3,5,10]
81

82 % Setting conditions for fmincon
83 % Sum(V1,...,VN) = Vtot
84 Aeq = zeros(N);
85 Aeq(1,:) = 1;
86 Beq = zeros(N,1);
87 Beq(1) = Vtot;
88

89 % 0 < V2,...,VN < Vtot; V1 > V1min
90 lb = zeros(1,N); lb(1) = V1min+(1e-03);
91 ub = Vtot*ones(1,N);
92

93 % Creating vector V with initial guesses
94 Vr = (Vtot-(V1min+(1e-03)))/(N-1);
95 V = Vr.*ones(N,1); V(1) = V1min+(1e-03);
96

97 % Minimizing function CSTR_V_given with conditions as above
98 [volumes(i,1:N),fval(i)]=fmincon(@CSTR_V_given,V,[],[],Aeq,Beq,lb,

ub,[],options);
99

100 % Store the minimum effluent substrate level and the required V1
101 V1_opt_CSTRs(i) = volumes(i,1);
102 Se_opt_CSTRs(i) = fval(i);
103

104 i = i+1;
105
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106 end
107

108 % Evaluating response from V1 for the case CSTR+PFR
109

110 l = 1;
111

112 for VCSTR = V1min:0.001:Vtot-0.001
113

114 VPFR = Vtot-VCSTR;
115

116 % Assigning initial values to parameters
117 Sin = 10; % Substrate concentration in the influent
118 Xin = 0; % Active biomass concentration in the influent
119 Zin = 0; % Inert biomass concentration in the influent
120

121 % Calculating Se for CSTR
122 S1 = (((Q/VCSTR)+b)*Ks)/(mumax-(Q/VCSTR)-b);
123 X1 = Q*(Sin-S1)*Y/(Q+(VCSTR*b*(1-((1-fp)*Y))));
124 Z1 = ((VCSTR/Q)*fp*b*X1)+Zin;
125

126 % Levels in effluent from CSTR = level in influent to PFR
127 Sin = S1;
128 Xin = X1;
129 Zin = Z1;
130

131 % Calculating Se from PFR
132 h0 = 0;
133 hPFR = VPFR/Ar;
134 hspan = [h0 hPFR];
135 x0 = [Sin, Xin, Zin];
136 [hPFR_vec,X] = ode45(@PFR,hspan,x0);
137

138 % Output = substrate level in the effluent of the PFR
139 Se(l) = X(end,1);
140 hPFR_vec = hPFR_vec;
141

142 l = l+1;
143

144 end
145

146 VCSTR = V1min:0.001:Vtot-0.001;
147

148 % Find V1opt for CSTR+PFR
149 Sin = 10;
150 Xin = 0;
151 Zin = 0;
152

153 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b);
154

155 % Setting conditions for fmincon
156 % Creating vector V with initial guesses
157 V = [];
158 V(1) = V1min+(1e-03);
159 V(2) = Vtot-V(1);
160

161 % sum(V) = Vtot
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162 Aeq = zeros(2);
163 Aeq(1,:) = 1;
164 Beq = zeros(2,1);
165 Beq(1) = Vtot;
166

167 % 0 < V < Vtot; VCSTR > V1min
168 lb = zeros(1,2); lb(1) = V1min+(1e-03);
169 ub = Vtot*ones(1,2);
170

171 % Minimizing function CSTR_V_given with conditions as above
172 [vol_opt_PFR,Se_opt_PFR]=fmincon(@PFR_V_given,V,[],[],Aeq,Beq,lb,ub,[])

;
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SCRIPTS TO GENERATE DATA FOR FIGURE 6, 7 AND 8

The results from the two following scripts were used to create figures 7 and 8.

N CSTRs

1 % The program finds the optimum volume Vˆ{opt}_1 for different b and fp
2

3 options = optimset(’TolFun’,1e-14, ’TolCon’, 1e-14,’DiffMinChange’, 0,
’Algorithm’, ’interior-point’);

4

5 global Q b mumax Sin Ks Y fp Xin Zin
6

7 Vtot = 1.1; % Total volume
8 Q = 1; % Inflow = outflow
9 mumax = 2; % Maximum specific growth rate

10 Y = 0.8; % Yield factor
11 Ks = 1.2; % Half saturation constant
12 Sin = 10; % Substrate level in the influent
13 Xin = 0; % Biomass level in the influent
14 Zin = 0; % Inert biomass level in the influent
15

16 % Choose N
17 N = 5;
18 fp_vec = 0:0.01:1;
19 b_vec = 0:0.01:0.87;
20

21 % Creating vectors to store values
22 volumes = zeros(length(fp_vec),N);
23 fval = zeros(1,length(fp_vec));
24 vol1_min = zeros(length(b_vec),length(fp_vec));
25 Se_min = zeros(length(b_vec),length(fp_vec));
26

27 l = 1;
28

29 for b = 0:0.01:0.87
30

31 k = 1;
32

33 for fp = 0:0.01:1
34

35 Sin = 10;
36 Xin = 0;
37 Zin = 0;
38

39 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b);
40

41 % Setting conditions for fmincon
42 % Sum(V1,...,VN) = Vtot
43 Aeq = zeros(N);
44 Aeq(1,:) = 1;
45 Beq = zeros(N,1);
46 Beq(1) = Vtot;
47

48 % 0 < V2,...,VN < Vtot; V1min < V1
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49 lb = zeros(1,N); lb(1) = V1min+(1e-03);
50 ub = Vtot*ones(1,N);
51

52 % Creating vector V with initial guesses
53 V(1) = V1min+(1e-03);
54 Vr = (Vtot-V(1))/(N-1);
55 V(2:N) = Vr.*ones((N-1),1);
56

57 % Minimizing function CSTR_V_given with conditions as above
58 [volumes(k,:),fval(k)]=fmincon(@CSTR_V_given,V,[],[],Aeq,Beq,lb

,ub,[],options);
59

60 vol1_opt(l,k) = volumes(k,1); % Save V1opt
61 Se_min(l,k) = fval(k); % Save Se(V1opt)
62

63 k = k+1;
64

65 end
66

67 l = l+1;
68

69 end

CSTR+PFR

1 % The program finds the optimum volume of the CSTR, Vˆ{opt}_1, for
different b and fp

2

3 options = optimset(’TolCon’,1e-14, ’TolFun’, 1e-14,’DiffMinChange’, 0,
’Algorithm’, ’interior-point’);

4

5 global Q b mumax Sin Ks Y fp Xin Zin Ar Vtot
6

7 Ar = 0.428; % Cross-sectional area of the PFR
8 Vtot = 1.1; % Total volume
9 Q = 1; % Inflow = outflow

10 mumax = 2; % Maximum specific growth rate
11 Y = 0.8; % Yield factor
12 Ks = 1.2; % Half saturation constant
13 Sin = 10; % Substrate level in the influent
14 Xin = 0; % Biomass level in the influent
15 Zin = 0; % Inert biomass level in the influent
16

17 l = 1;
18

19 for b = 0.0:0.01:0.87
20

21 k = 1;
22

23 for fp = 0.0:0.01:1.0
24

25 Sin = 10;
26 Xin = 0;
27 Zin = 0;
28
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29 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b);
30

31 % Setting conditions for fmincon
32 % Creating vector V with initial guesses
33 V(1) = V1min+(1e-03);
34 V(2) = Vtot-V(1);
35

36 % sum(V) = Vtot
37 Aeq = zeros(2);
38 Aeq(1,:) = 1;
39 Beq = zeros(N,1);
40 Beq(1) = Vtot;
41

42 % 0 < V < Vtot and V1 > V1min
43 lb = zeros(1,2); lb(1) = V1min+(1e-03);
44 ub = Vtot*ones(1,2);
45

46 % Minimizing function CSTR_V_given with conditions as above
47 [volumes(k,:),fval(k)]=fmincon(@PFR_V_given,V,[],[],Aeq,Beq,lb,

ub,[],options);
48

49 vol1_opt(l,k) = volumes(k,1); % Save V1opt
50 Se_min(l,k) = fval(k); % Save Se(V1opt)
51

52 k = k+1;
53

54 end
55

56 l = l+1;
57

58 end
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SCRIPTS TO GENERATE DATA FOR FIGURE 9, 10 AND 11

Chosen value of b and fp

1 % The program calculates Se when V1 to VN are optimized for different N
. It also calculates V1* (V1opt for the case of PFR+CSTR) and Se
for the case when V1 = V1* and V2 = ... = VN (N = 2,...,10).

2

3 options = optimset(’TolFun’,1e-14, ’TolCon’, 1e-14,’DiffMinChange’, 0,
’Algorithm’, ’interior-point’);

4

5 global Q b mumax Sin Ks Y fp Xin Zin Ar Vtot v
6

7 Ar = 0.428; % Cross-sectional area of the PFR
8 Vtot = 1.1; % Total volume
9 Q = 1; % Inflow = outflow

10 mumax = 2; % Maximum specific growth rate
11 Y = 0.8; % Yield factor
12 b = 0.0; % Decay rate
13 fp = 0.0; % Amount that becomes inert
14 Ks = 1.2; % Half saturation constant
15 Sin = 10; % Substrate level in the influent
16 Xin = 0; % Biomass level in the influent
17 Zin = 0; % Inert biomass level in the influent
18

19

20 % Optimize all volumes for N = 2,...,10
21 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b); % Wash-out volume
22 i = 1;
23

24 for N = 2:1:10
25

26 Sin = 10;
27 Xin = 0;
28 Zin = 0;
29

30 % Setting conditions for fmincon
31 % Sum(V1,...,VN) = Vtot
32 Aeq = zeros(N);
33 Aeq(1,:) = 1;
34 Beq = zeros(N,1);
35 Beq(1) = Vtot;
36

37 % 0 < V2,...,VN < Vtot; V1 > V1min;
38 lb = zeros(1,N); lb(1) = V1min+(1e-03);
39 ub = Vtot*ones(1,N);
40

41 % Creating vector V with initial guesses
42 V(1) = V1min+(1e-03);
43 Vr = (Vtot-V(1))/(N-1);
44 V(2:N) = Vr.*ones((N-1),1);
45

46 % Minimizing function CSTR_V_given with conditions as above
47 [volumes(i,1:N),Se_all_opt(i)]=fmincon(@CSTR_V_given,V,[],[],Aeq,

Beq,lb,ub,[],options);
48
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49 i = i+1;
50

51 end
52

53 % Finding V1* (V1opt for CSTR+PFR)
54 Sin = 10;
55 Xin = 0;
56 Zin = 0;
57 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b);
58

59 % Setting conditions for fmincon
60 % Creating vector V with initial guesses
61 V_PFR(1) = V1min+(1e-03);
62 V_PFR(2) = Vtot-V_PFR(1);
63

64 % sum(V) = Vtot
65 Aeq_PFR = zeros(2);
66 Aeq_PFR(1,:) = 1;
67 Beq_PFR = zeros(2,1);
68 Beq_PFR(1) = Vtot;
69

70 % 0 < V < Vtot; VCSTR > V1min
71 lb_PFR = zeros(1,2); lb_PFR(1) = V1min+(1e-03);
72 ub_PFR = Vtot*ones(1,2);
73

74 % Minimizing function PFR_V_given with conditions as above
75 [volumes_PFR,fval]=fmincon(@PFR_V_given,V_PFR,[],[],Aeq_PFR,Beq_PFR,

lb_PFR,ub_PFR,[],options);
76

77 % Calculating Se for the case when V1 = V1* and V2=...=VN.
78 k = 1;
79

80 for N = 2:1:10;
81

82 Vr = (Vtot-volumes_PFR(1))/(N-1);
83 V = Vr.*ones(N,1);
84 V(1) = volumes_PFR(1);
85

86 % Calculating S in the first CSTR
87 Sin = 10;
88 Xin = 0;
89 Zin = 0;
90 S1 = (((Q/V(1))+b)*Ks)/(mumax-(Q/V(1))-b);
91 X1 = Q*(Sin-S1)*Y/(Q+(V(1)*b*(1-((1-fp)*Y))));
92 Z1 = ((V(1)/Q)*fp*b*X1)+Zin;
93 Sin = S1;
94 Xin = X1;
95 Zin = Z1;
96

97 % Calculating Se for the rest of the CSTRs
98 n = length(V);
99

100 for j=2:n
101

102 v = V(j);
103 x = [Sin, Xa_in, Xi_in];
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104 Z = fsolve(@diff_eqn, x);
105

106 Sin = Z(1);
107 Xin = Z(2);
108 Zin = Z(3);
109 Sstat(j) = Sin;
110 Xstat(j) = Xin;
111 Zstat(j) = Zin;
112

113 end
114

115 Se_first_opt(k) = Sstat(end);
116

117 k = k+1;
118

119 end

Fixed fp, varying b

1 % The program calculates Se when V1 to VN are optimized for different N
. It also calculates V1* (V1opt for the case of PFR+CSTR) and Se
for the case when V1 = V1* and V2 = ... = VN (N = 2,...,10). b is
varying and fp is constant.

2

3 options = optimset(’TolFun’,1e-14, ’TolCon’, 1e-14,’DiffMinChange’, 0,
’Algorithm’, ’interior-point’);

4

5 global Q b mumax Sin Ks Y fp Xin Zin Ar Vtot v
6

7 Ar = 0.428; % Cross-sectional area of the PFR
8 Vtot = 1.1; % Total volume
9 Q = 1; % Inflow = outflow

10 mumax = 2; % Maximum specific growth rate
11 Y = 0.8; % Yield factor
12 Ks = 1.2; % Half saturation constant
13 Sin = 10; % Substrate level in the influent
14 Xin = 0; % Biomass level in the influent
15 Zin = 0; % Inert biomass level in the influent
16

17 fp = 0.4;
18

19 % Optimize all volumes for N = 2,...,10
20 k = 1;
21

22 for b = 0:0.01:0.5
23

24 i = 1;
25

26 for N = 2:1:10
27

28 Sin = 10;
29 Xin = 0;
30 Zin = 0;
31

32 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b); % Wash-out volume
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33

34 % Setting conditions for fmincon
35 % Sum(V1,...,VN) = Vtot
36 Aeq = zeros(N);
37 Aeq(1,:) = 1;
38 Beq = zeros(N,1);
39 Beq(1) = Vtot;
40

41 % V1min < V1 < Vtot
42 % 0 < V2,...,VN < Vtot
43 lb = zeros(1,N); lb(1) = V1min+(1e-03);
44 ub = Vtot*ones(1,N);
45

46 % Creating vector V with initial guesses
47 Vr = Vtot/N;
48 V = Vr.*ones(N,1);
49

50 % Minimizing function CSTR_V_given with conditions as above
51 [volumes,Se_all_opt(k,i)]=fmincon(@CSTR_V_given,V,[],[],Aeq

,Beq,lb,ub,[],options);
52

53 i = i+1;
54

55 end
56

57 k = k+1;
58

59 end
60

61 % Finding V1*
62

63 i = 1;
64

65 for b = 0:0.01:0.5
66

67 Sin = 10;
68 Xin = 0;
69 Zin = 0;
70

71 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b);
72

73 % Setting conditions for fmincon
74 % Creating vector V with initial guesses
75 V_PFR(1) = V1min;
76 V_PFR(2) = Vtot-V_PFR(1);
77

78 % sum(V) = Vtot
79 Aeq_PFR = zeros(2);
80 Aeq_PFR(1,:) = 1;
81 Beq_PFR = zeros(2,1);
82 Beq_PFR(1) = Vtot;
83

84 % 0 < V < Vtot
85 lb_PFR = zeros(1,2); lb_PFR(1) = V1min+(1e-03);
86 ub_PFR = Vtot*ones(1,2);
87
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88 % Minimizing function CSTR_V_given with conditions as above
89 [volumes_PFR(i,:),fval(i)]=fmincon(@PFR_V_given,V_PFR,[],[],Aeq_PFR,

Beq_PFR,lb_PFR,ub_PFR,[],options);
90

91 i = i+1;
92

93 end
94

95 % Claculating Se for the case where V1 = V1* and V2=...=VN.
96 i = 1;
97

98 for b = 0:0.01:0.5
99

100 k = 1;
101

102 for N = 2:1:10;
103

104 Vr = (Vtot-volumes_PFR(i,1))/(N-1);
105 V = Vr.*ones(N,1);
106 V(1) = volumes_PFR(i,1);
107

108 % Calculating S in the first CSTR
109 Sin = 10;
110 Xin = 0;
111 Zin = 0;
112 S1 = (((Q/V(1))+b)*Ks)/(mumax-(Q/V(1))-b);
113 X1 = Q*(Sin-S1)*Y/(Q+(V(1)*b*(1-((1-fp)*Y))));
114 Z1 = ((V(1)/Q)*fp*b*X1)+Zin;
115 Sin = S1;
116 Xin = X1;
117 Zin = Z1;
118

119 % Calculating S for the rest of the CSTRs
120

121 n = length(V);
122 Sstat = zeros(1,n);
123 Xstat = zeros(1,n);
124 Zstat = zeros(1,n);
125

126 for j=2:n
127

128 v = V(j);
129

130 x = [Sin, Xin, Zin];
131

132 Z = fsolve(@diff_eqn, x);
133

134 Sin = Z(1);
135 Xin = Z(2);
136 Zin = Z(3);
137

138 Sstat(j) = Sin;
139 Xstat(j) = Xin;
140 Zstat(j) = Zin;
141

142 end
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143

144 Se_first_opt(i,k) = Sstat(end);
145

146 k = k+1;
147

148 end
149

150 i = i+1;
151

152 end

Fixed b, varying fp

1 % The program calculates Se when V1 to VN are optimized for different N
. It also calculates V1* (V1opt for the case of PFR+CSTR) and Se
for the case when V1 = V1* and V2 = ... = VN (N = 2,...,10). fp is
varying and b is constant.

2

3 options = optimset(’TolFun’,1e-14, ’TolCon’, 1e-14,’DiffMinChange’, 0,
’Algorithm’, ’interior-point’);

4

5 global Q b mumax Sin Ks Y fp Xin Zin Ar Vtot v
6

7 Ar = 0.428; % Cross-sectional area of the PFR
8 Vtot = 1.1; % Total volume
9 Q = 1; % Inflow = outflow

10 mumax = 2; % Maximum specific growth rate
11 Y = 0.8; % Yield factor
12 Ks = 1.2; % Half saturation constant
13 Sin = 10; % Substrate level in the influent
14 Xin = 0; % Biomass level in the influent
15 Zin = 0; % Inert biomass level in the influent
16

17 b = 0.25;
18

19 % Optimize all volumes for N = 2,...,10
20 k = 1;
21

22 for fp = 0:0.01:1
23

24 i = 1;
25

26 for N = 2:1:10
27

28 Sin = 10;
29 Xin = 0;
30 Zin = 0;
31

32 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b); % Wash-out volume
33

34 % Setting conditions for fmincon
35 % Sum(V1,...,VN) = Vtot
36 Aeq = zeros(N);
37 Aeq(1,:) = 1;
38 Beq = zeros(N,1);
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39 Beq(1) = Vtot;
40

41 % V1min < V1 < Vtot
42 % 0 < V2,...,VN < Vtot; V1 > V1min
43 lb = zeros(1,N); lb(1) = V1min+(1e-03);
44 ub = Vtot*ones(1,N);
45

46 % Creating vector V with initial guesses
47 Vr = Vtot/N;
48 V = Vr.*ones(N,1);
49

50 % Minimizing function CSTR_V_given with conditions as above
51 [volumes,Se_all_opt(k,i)]=fmincon(@CSTR_V_given,V,[],[],Aeq,Beq

,lb,ub,[],options);
52

53 i = i+1;
54

55 end
56

57 k = k+1;
58

59 end
60

61 % Finding V1*
62 i = 1;
63

64 for fp = 0:0.01:1
65

66 Sin = 10;
67 Xin = 0;
68 Zin = 0;
69

70 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b);
71

72 % Setting conditions for fmincon
73 % Creating vector V with initial guesses
74 V_PFR(1) = V1min;
75 V_PFR(2) = Vtot-V_PFR(1);
76

77 % sum(V) = Vtot
78 Aeq_PFR = zeros(2);
79 Aeq_PFR(1,:) = 1;
80 Beq_PFR = zeros(2,1);
81 Beq_PFR(1) = Vtot;
82

83 % 0 < V_PFR < Vtot; V_CSTR > V1min
84 lb_PFR = zeros(1,2); lb_PFR(1) = V1min+(1e-03);
85 ub_PFR = Vtot*ones(1,2);
86

87 % Minimizing function CSTR_V_given with conditions as above
88 [volumes_PFR(i,:),fval(i)]=fmincon(@PFR_V_given,V_PFR,[],[],Aeq_PFR

,Beq_PFR,lb_PFR,ub_PFR,[],options);
89

90 i = i+1;
91

92 end
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93

94 % Claculating Se for the case where V1 = V1* and V2=...=VN.
95 i = 1;
96

97 for fp = 0:0.01:1
98

99 k = 1;
100

101 for N = 2:1:10;
102

103 Vr = (Vtot-volumes_PFR(i,1))/(N-1);
104 V = Vr.*ones(N,1);
105 V(1) = volumes_PFR(i,1);
106

107 % Calculating S in the first CSTR
108 Sin = 10;
109 Xin = 0;
110 Zin = 0;
111 S1 = (((Q/V(1))+b)*Ks)/(mumax-(Q/V(1))-b);
112 X1 = Q*(Sin-S1)*Y/(Q+(V(1)*b*(1-((1-fp)*Y))));
113 Z1 = ((V(1)/Q)*fp*b*X1)+Zin;
114 Sin = S1;
115 Xin = X1;
116 Zin = Z1;
117

118 % Calculating S in the rest of the CSTRs
119 n = length(V);
120 Sstat = zeros(1,n);
121 Xstat = zeros(1,n);
122 Zstat = zeros(1,n);
123

124 for j=2:n
125

126 v = V(j);
127

128 x = [Sin, Xin, Zin];
129

130 Z = fsolve(@diff_eqn, x);
131

132 Sin = Z(1);
133 Xin = Z(2);
134 Zin = Z(3);
135 Sstat(j) = Sin;
136 Xstat(j) = Xin;
137 Zstat(j) = Zin;
138

139 end
140

141 Se_first_opt(i,k) = Sstat(end);
142

143 k = k+1;
144

145 end
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SCRIPTS TO GENERATE DATA FOR FIGURE 12

1 % Optimal design for at given effluent substrate concentration
2

3 global Q b mumax Sin Ks Y fp Xa_in Xi_in Ar Se
4

5 Ar = 0.428; % Cross-sectional area of the PFR
6 Q = 1; % Inflow = outflow
7 mumax = 2; % Maximum specific growth rate
8 Y = 0.8; % Yield factor
9 b = 0.1; % Decay rate

10 fp = 0.1; % Amount that becomes inert
11 Ks = 1.2; % Half saturation constant
12 Sin = 10; % Substrate level in the influent
13 Xa_in = 0; % Biomass level in the influent
14 Xi_in = 0; % Inert biomass level in the influent
15

16 V1min = Q/(((mumax*Sin)/(Ks+Sin))-b); % Wash-out volume
17

18 % Finding Vopt for CSTR+PFR
19 i = 1;
20

21 volumes1 = zeros(5,2);
22

23 Smin = ((1-fp)*b*Y*Ks)/(mumax-((1-fp)*b*Y));
24 Smin = 1.1*Smin;
25

26 for Se = [0.1, 0.2, 10/10, 10/5, 10];
27

28 % Setting conditions for fmincon
29 % Creating vector V with initial guesses
30 V0 = V1min.*ones(1,2); V0(1)=100;
31

32 % Linear constraint: Vi > 0
33 lb = (1e-6).*ones(1,2); lb(1) = V1min+1e-6;
34 ub = zeros(1,2); ub(1:end) = Inf;
35

36 % Non-linear constraint: Se(V1,...,VN) = Se
37 nonlcon1 = @nlcon1;
38

39 % Minimizing function volume with conditions as above
40 [volumes1(i,:),V_opt(i)]=fmincon(@volume,V0,[],[],[],[],lb,ub,

nonlcon1,[]);
41

42 i = i + 1;
43

44 end
45

46 % Finding V(N) for N CSTRs in series
47 l = 1;
48

49 for N = 2:1:5;
50

51 k = 1;
52
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53 volumes2 = zeros(5,N);
54

55 for Se = [Smin, 0.2, 10/10, 10/5, 10];
56

57 % Setting conditions for fmincon
58 % Creating vector V with initial guesses
59 V0 = V1min.*ones(N,1);
60

61 % Linear constraint: Vi > 0
62 lb = (1e-6).*ones(1,N); lb(1) = V1min+(1e-6);
63 ub = zeros(1,N); ub(1:end) = Inf;
64

65 % Non-linear constraint: SN(V1,...,VN) = Se
66 nonlcon2 = @nlcon2;
67

68 % Minimizing function volume with conditions as above
69 [volumes2(k,:),V_N(l,k)]=fmincon(@volume,V0,[],[],[],[],lb,ub,

nonlcon2,[]);
70

71 k = k + 1;
72

73 end
74

75 l = l + 1;
76

77 end
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