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ABSTRACT 

Using linear regression and neural network to forecast sewer flow from X-band 

radar data 

Fredrik Wigertz 

The climate adaptation of our cities and the optimization of our technical systems with 

regards to weather sets high demands on the availability and the processing of weather 

data. The possibility to forecast disturbances of influent flow rate to wastewater 

treatment plants allow control systems counteract these disturbances before they have a 

harmful effect on the treatment processes. These forecasts can be made by different 

models A neural network models complex patterns between different data sets through a 

multi-layered structure containing a large amount of transformation functions.  

The aim of this project was to examine how the complex neural network performed 

compared with a simpler linear regression model when forecasting wastewater flow 

using high resolution X-band rain radar data. The study also investigated to what extent 

X-band rain radar data contributes to the performance of the model. The performance 

was evaluated at rain flow periods only.  

Wastewater flow data were provided by Avedøre wastewater treatment plant in 

Copenhagen operated by BIOFOS. The X-band rain radar data was provided by 

HOFOR. The neural network was developed by Informetics on the TensorFlow 

platform.  

This project concluded that the neural network and the linear regression model 

performed equally well at predicting when a rain flow period began. The neural network 

was more accurate at predicting the flow rate while the linear regression was better at 

approximating the accumulated flow over an entire rain flow period. Using additional 

rain data up to 30 km within the radar station location in comparison with using data 

only from within the catchment indicated a 20 to 30-minutes improvement of possible 

lead time. A conceivable lead time when forecasting the sewer flow to Avedøre 

wastewater treatment plant was estimated to be around 4 hours.  

Keywords: Neural network, Linear regression, Flow forecasting, Wastewater, 

Wastewater treatment plant, Rainfall-runoff modelling, X-band radar.   
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REFERAT 

Användning av linjär regression och neurala nätverk för att förutsäga 

avloppsflöde utifrån X-band radardata 

Fredrik Wigertz 

 

Det föreligger höga krav på tillgänglighet och bearbetning av väderdata för att kunna 

optimera tekniska system i förhållande till väder och klimat. Att kunna förutsäga ändrat 

inkommande flöde till avloppsreningsverk möjliggör för kontrollsystem att kunna 

motverka negativa konsekvenser på reningsprocesserna på grund av det ändrade flödet. 

X-band radardata kan användas för att prognoser av flöden med hjälp av olika modeller. 

Ett neuralt nätverk, reproducerar komplexa mönster mellan olika dataset genom en 

struktur med flera lager och en mängd överföringsfunktioner.  

 

Målsättningen med det här projektet var att utvärdera hur ett komplext neuralt nätverk 

presterar jämfört med en enklare regressionsmodell i att förutsäga avloppsflöde med 

hjälp av högupplöst X-band radardata. I projektet undersöktes också hur tillgång av 

olika radardata kunde bidra till modellens prestanda. Modellerna utvärderades endast 

under regnflödesperioder. 

 

Data över avloppsflödet som användes i projektet kom från Avedøre 

avloppsreningsverk i Köpenhamn. Reningsverket drivs av BIOFOS. Radardata kom 

från HOFOR. Det neurala nätverket som användes har utvecklats av Informetics på 

plattformen Tensorflow. 

 

Slutsatser som kunde dras i projektet var att det neurala nätverket och den linjär 

regressionsmodellen var lika bra på att förutsäga när en regnflödesperiod startade. Det 

neurala nätverket kunde förutsäga det momentana flödet bättre än regressionsmodellen, 

medan det omvända gällde för att uppskatta den totala flödesvolymen under en hel 

regnflödesperiod. Genom att använda ytterligare regndata, upp till 30 kilometer från 

radarstationen, jämfört med att endast använda data från avrinningsområdet kunde en 

20–30 minuters förbättring av den möjliga prognostiden påvisas. En tänkbar 

prognostiden för att förutsäga avloppsflödet till Avedøre avloppsreningsverk visades 

ligga omkring 4 timmar. 

 

Nyckelord: Neurala nätverk, Linjär regression, Flödesprognosering, Avloppsvatten, 

Reningsverk, Avrinningsmodellering, X-bandradar.   
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POPULÄRVETENSKAPLIG SAMMANFATTNING 

Dagens avloppsreningsverk använder många olika metoder för att rena vatten, ofta en 

kombination av fysiska, kemiska och biologiska processer. Reningsverken blir allt mer 

avancerade och kräver mer automatiserad kontroll för att säkerställa fungerande och 

komplexa processer. Att kunna förutsäga förändringar i inflödet av avloppsvatten är 

viktigt för att möjliggöra för kontrollsystemen att vara beredda och kunna motverka 

störningar vid kraftigt förhöjda inflöden av vatten exempelvis i samband med skyfall. 

Det föreligger därför höga krav på tillgänglighet och bearbetning av väderdata för att 

kunna optimera de tekniska systemen i förhållande till väder och klimat. 

Avloppsvatten består av spillvatten från hushåll och industrier, av dräneringsvatten och 

av dagvatten från nederbörd. Mängden vatten som når ett reningsverk i form av 

spillvatten varierar över dygnet, veckan och året beroende på variationer i den mänsklig 

aktiviteten som genererar inflödet. Dagvatteninflödet kan skapa dramatiska förändringar 

i inflödet beroende på nederbörden och det är därför viktigt ur både miljömässigt och 

ekonomiskt hänseende att kunna förutsäga och motverka dessa kraftiga svängningar.  

Under de senaste årtiondena har man, allt eftersom datakapaciteten ökat, försökt att 

skapa så kallade neurala nätverk som i sin uppbyggnad liknar hur nervcellerna är 

förbundna och fungerar i hjärnan. Målsättningen med det här examensarbetet var att 

utvärdera hur väl ett komplext nätverk kunde förutsäga vattenflöden till ett 

avloppsreningsverk jämfört med en enklare statistisk sambandsmodell. 

För att utvärdera modellerna användes data från Avedøre avloppsreningsverk i 

Köpenhamn. Flödesdata i reningsverket jämfördes med högupplöst radardata (X-band) 

som visade nederbörden. I arbetet identifierades perioder där avloppsvattenflödet till 

reningsverket var starkt påverkat av nederbörd, så kallade regnflöden. Dessa perioder 

kan skapa problem för reningsprocesserna och de utgjorde därför utgångspunkt för 

utvärderingen av hur väl modellerna kunde förutsäga flöde som är påverkat av regn.  

Slutsatser som kunde dras i examensarbetet var att det neurala nätverket och den enklare 

statistiska sambandsmodellen var lika bra på att förutsäga när en regnflödesperiod 

startade. Det neurala nätverket var bättre på att förutsäga det ögonblickliga flödet än den 

enklare modellen, medan det omvända gällde för att uppskatta det totala flödet under en 

hel regnflödesperiod. Genom att använda ytterligare regndata, upp till 30 kilometer från 

radarstationen, jämfört med att endast använda data från avrinningsområdet kunde en 

20–30 minuters förbättring av den möjliga prognostiden påvisas. Den maximala 

prognostiden för att förutsäga avloppsflödet till Avedøre avloppsreningsverk visades 

ligga mellan 4–5 timmar. 
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ABREVATIONS AND DEFINITIONS 

Abbreviations:  

WWTP: Wastewater Treatment Plant 

NN: Neural Network 

LRM: Linear Regression Model  

MAE: Mean Absolute Error 

reLu: rectified Linear unit (Activation function) 

pdf: probability density function 

Definitions:  

Input signal/Input data/Input: The input data to a model that the prediction of 

the output signal is based upon.  

Output signal/Output data/Output:  The output data that the model is trying to 

predict.  

Lead time: How long ahead in time of the input signal that the prediction is 

made. Also called prediction horizon.  

Dry flow period: Periods where the wastewater flow is not influenced by rain.  

Rain flow period: Periods where rain has infiltrated the sewer system, thus 

adding to the wastewater flow.  

Evaluation period: A subset of rain flow periods deemed suitable for the 

performance of the models to be evaluated over.  

Flow shift: The shift between a dry flow period and a rain flow period.  

  



vi 

 

TABLE OF CONTENT  

1. INTRODUCTION ........................................................................................................ 1 

1.1. PROJECT AIM ...................................................................................................... 2 

2. THEORY ...................................................................................................................... 3 

2.1. WASTEWATER SOURCES AND TRANSPORTATION .................................. 3 

2.1.1 Wastewater sources .......................................................................................... 3 

2.1.2. Rainfall – runoff processes .............................................................................. 3 

2.1.3. Sewer systems ................................................................................................. 4 

2.1.4. Catchment of Avedøre WWTP ....................................................................... 4 

2.2. X-BAND RADAR ................................................................................................. 5 

2.2.1. Radar data ........................................................................................................ 6 

2.2.2. Sources of error and correction ....................................................................... 6 

2.3. MACHINE LEARNING ....................................................................................... 7 

2.3.1. Training and Validation .................................................................................. 7 

2.3.2. Neural network ................................................................................................ 8 

2.3.3. Linear regression model ................................................................................ 10 

2.3.4. Lead times ..................................................................................................... 11 

3. METHOD ................................................................................................................... 12 

3.1. DATA AND INPUT ............................................................................................ 12 

3.1.1. Flow data ....................................................................................................... 12 

3.1.2. Rain data ........................................................................................................ 14 

3.1.3. Additional input signals ................................................................................ 16 

3.2. MODEL TRAINING ........................................................................................... 16 

3.2.1. Hyperparameter optimization ........................................................................ 17 

3.2.2. Resulting model............................................................................................. 18 

3.3. EVALUATION ................................................................................................... 19 

3.3.1. Selecting rain periods for evaluation ............................................................. 20 

3.3.2. Evaluation method......................................................................................... 22 

4. RESULTS ................................................................................................................... 24 

4.1. Part 1: Comparison of LRM and NN ................................................................... 24 

4.1.1. Flow shift timing ........................................................................................... 24 

4.1.2. Relative Volume ............................................................................................ 25 

4.1.3. Mean absolute error (MAE) .......................................................................... 26 



vii 

 

4.1.4. Overall comparison ....................................................................................... 28 

4.2. PART 2: EXTENDED RAIN RADAR DATA ................................................... 29 

4.2.1. Flow shift timing ........................................................................................... 29 

4.2.2. Mean absolute error (MAE) .......................................................................... 30 

4.2.4. Overall comparison ....................................................................................... 31 

5. DISCUSSION ............................................................................................................. 33 

5.1 PART 1: Comparison of LRM and NN ................................................................ 33 

5.2. PART 2: EXTENDED RAIN RADAR DATA ................................................... 34 

5.3. ERROR SOURCES ............................................................................................. 35 

5.3.1. Flow data error .............................................................................................. 35 

5.3.2. Rain data error ............................................................................................... 35 

5.4. APPLICATION TO AVEDØRE WWTP ............................................................ 36 

6. CONCLUSION .......................................................................................................... 38 

7. REFERENCES ........................................................................................................... 39 

8. APPENDIX ................................................................................................................ 42 

8.1. RAIN DATA SUMMARY .................................................................................. 42 

8.2. HYPERPARAMETER TUNING SUMMARY .................................................. 43 

8.3. EVALUATION PERIODS SUMMARY ............................................................ 45 

8.4. Wilcoxcon rank sum test ...................................................................................... 47 

8.4.1 Part 1-Flow shift timing ................................................................................. 47 

8.4.2 Part 1-Relative volume ................................................................................... 48 



1 

 

1. INTRODUCTION 
Modern wastewater treatment plants (WWTP) use a variety of different processes of 

both physical, chemical, and biological nature to reach today’s environmental demands 

on effluent water (Svenskt Vatten 2019). As WWTPs become more advanced the need 

for operational control increases to ensure that the complex treatment processes will 

remain functional and resources efficient. Forecasting the disturbances of the influent 

flow, primarily caused by precipitation, will allow for a feedforward control system 

(Bennet 1979) and action can be taken to counteract these disturbances before they have 

a harmful effect on the treatment processes. The benefits of forecasting are therefore 

both environmental and economical. Additionally, failing to clean wastewater may 

cause the spread of infectious diseases (Svenskt Vatten 2013). 

Avedøre wastewater treatment plant is found in Hvidovre municipality in the southern 

part of the capital area of Denmark. Avedøre WWTP faces the sea at Køge Bugt, a bay 

area in the strait of Øresund. Avedøre WWTP is operated by BIOFOS, Denmark’s 

largest wastewater organization. BIOFOS provides treatment services for 1.2 million 

inhabitants through three different WWTPs, Avedøre, Lynetten and Damhusåsen 

(BIOFOS 2021), BIOFOS is owned by 15 municipalities located within the capital area.  

The treatment processes at Avedøre WWTP are controlled by the control software 

STAR Utility SolutionsTM developed by Veolia Water Technologies (Krüger, 2021). 

The control has for instance helped increasing the hydraulic capacity of the WWTP 

without increasing the process volume. This has reduced the risk of sludge escape 

(Veolia-1, 2016) and improved the quality of the effluent water. The control is adjusting 

the processes in relation to the incoming flow (Veolia-2, 2016). If the flow has 

substantially increased by the influence of rain Avedøre WWTP will shift the treatment 

processes to handle the rain flow that has other characteristics than the normal flow also 

referred to as dry flow. The sooner a shift from dry flow to rain flow can be predicted 

before its realisation, the more time will be given for the treatment processes to adjust. 

A limiting factor when setting up a forecast is the data availability and the measuring 

techniques (Beven 2001). The influent flow to the WWTP has predominantly two 

sources of driving variables that need to be measured for forecasts. The first one being 

the wastewater resulting from human activities and therefore behaving periodically. The 

second one being the precipitation which disturbs the system randomly. The short 

response time in an urban catchment makes high temporal and spatial resolution of the 

precipitation data important to give accurate forecasts (Einfalt et al. 2004). This is 

especially important when measuring peak flows from intensive short lived and local 

weather (Thorndahl et al. 2017). Errors in precipitation data accounts for a large part of 

the uncertainty when modelling the rainfall-runoff relationship.  

In early 2017 an X-band radar station was installed in western Copenhagen by HOFOR. 

HOFOR supplies the capital region of Denmark with water and operates parts of the 

sewer system. An X-band radar is a high-resolution radar excellent at measuring local 

weather occurrences with a 30-kilometre measurement range and a 50-kilometre 
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observational range. High-resolution radar measurements lead to a large amount of data. 

To store and process that amount of data large and effective computer resources are 

needed. 

In urban hydrology, one application of short-term weather-related forecasts is the ability 

to predict hydrologic changes due to weather (Thorndahl et al. 2017). First, the 

relationship between the weather and the responding hydrologic feature needs to be 

modelled to allow for the prediction to be made. One modelling approach that has been 

extensively used in the past is to represent the natural processes numerically. Another 

approach data-driven modelling such as machine learning and that model does not 

require knowledge of the processes but instead relies on finding relationships in the 

available data. 

One common model in machine learning is the linear regression model that was 

developed in the field of statistics. The model is best used when the relationship 

between the variables at large is linear. A neural network is another machine learning 

model that is used for many different applications (Guttag, 2017) in our data driven 

society. It resembles the human neural network and can efficiently find complex non-

linear patterns in massive amount of data.  

In this project a neural network software developed by Informetics will be used to 

forecast wastewater flow from primarily rain data measured by X-band radar. In 2020, 

Faust and Nelsson used the same Neural Network model with X-band radar to forecast 

the wastewater flow in Lund in their master thesis. They concluded that it was possible 

to accurately forecast 1 hour ahead of time for that relatively small catchment when 

using exclusively rain data from within the catchmentThey suggested further 

investigations to determine if rain data from outside the catchment could improve how 

far ahead the forecasts can be made.  

1.1. PROJECT AIM 

This project aimed to examine how the choice of machine learning model and rain data 

influence the forecast performance. A neural network was compared to a linear 

regression model when forecasting sewer flow of different lead times and using 

different extents of X-band radar data as input signal. Since the control strategy of 

Avedøre WWTP is mostly interested in when dry flow shifts to rain flow the 

performance of the models in this project was primarily evaluated by their ability to 

predict when this shift occurs. Their ability to accurately predict the flow rate was also 

of interest. The further into the future that the models can make well performing 

forecasts the better. 

More specifically the aim was to answer the following questions: 

• How does a neural network perform compared to a multivariate linear regression 

model when forecasting sewer flow with X-band radar data?  

• What extent of X-band radar data improves the ability to make accurate sewer 

flow forecasts at longer lead times? 
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2. THEORY  
The theory section is divided into three parts. The first part is concerned with how 

wastewater is produced and transported both generally and with application to Avedøre 

WWTP. The second part presents background theory about the X-band radar. The third 

part introduces machine learning and more specifically linear regression models and 

neural networks. 

2.1. WASTEWATER SOURCES AND TRANSPORTATION 

2.1.1 Wastewater sources 

Wastewater, stormwater, drainage water, and leakage water as defined by Swedish 

Water and Wastewater association (Swedish: Svenskt Vatten) all contribute to  the 

inflow of WWTPs (Svenskt Vatten 2013). Wastewater is the contaminated water that is 

primarily intended to be processed at the WWTP. Wastewater is produced in 

households, by services and industries. Wastewater production is periodical and varies 

depending on time of day, day of the week, and on the season. Depending on the 

proportions of different types of wastewater sources the flow rate over time can vary a 

great deal because industries and services are not usually active on weekends and 

holidays. Other water sources enter the sewer system, either led intentional or leaked 

unintentional, from surface runoff or groundwater. These sources are regenerated by 

rainfall. 

2.1.2. Rainfall – runoff processes 

The relation between rainfall and runoff are studied by hydrologists and are of great 

concern for proper water resource management. The fraction of a rain fall that will 

contribute to a point downstream (such as a WWTP) within a certain time frame as the 

runoff production and the distribution of the rainfall runoff over time are regarded as 

runoff routing (Beven, 2001). Runoff production and routing are dependent on the 

characteristics of the catchment area, the rain fall and the climate. These factors may 

differ a lot between different locations. The hydrological processes in a catchment are 

spatially heterogeneous, they are in part occurring underground, the driving variables 

are hard to measure, and the processes are affected by non-linearities and a constantly 

changing environment (Kirchner 2009). Therefore, it is important to substantially 

simplify and generalize the driving processes to make a feasible model over the rainfall 

runoff relationship. In urban catchments, the impervious surfaces and relatively small 

areas give a short response time between rainfall and rise in flow compared with a 

natural catchment area (Thorndahl et al. 2017). 

The short response time of an urban catchment combined with a limited capacity of the 

water infrastructure to handle large flows can cause urban flooding during high intensity 

rain (Dahlström, 2006). High intensity rain fall are most likely to occur during the 

summer in the Nordic climate (SMHI, 2020), because of a larger temperature difference 

between the surface and air. They can also emerge locally under a short period making 

it harder for the intensity to be measured accurately with a low-resolution radar 

(Dahlström, 2006). The Swedish meteorological and hydrological institute (SMHI) 
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defines a heavy rain fall to give more than 2 mm rain over a 10 minute-period or more 

than 10 mm rain over a 1 hour-period (SMHI, 2015).  

Bengt Dahlström (2006) constructed a formula, based on rain data from 47 locations in 

Sweden, that calculates rainfall intensity based on the duration and the return time. A 6-

hour rain yielding 7.8 mm of rain is likely to occur once a month and a 6-hour rain 

yielding 17.8 mm is likely to occur once a year. In comparison, during the summer of 

2014, the largest rainfall event in Swedish measured history occurred in Malmö with 

110 mm rain from 6 hour of rainfall (VA SYD 2017). This is approximately 30 mm 

higher than the total rainfall from a 6-hour rain that is likely to occur once every 100 

years (Dahlström, 2006). 

2.1.3. Sewer systems 

In the case of a WWTP inflow, the rainwater must infiltrate the sewer system to be able 

to reach the WWTP. There are three types of sewer systems: combined systems, 

duplicate systems, and separate systems (Svenskt Vatten 2013). The amount of rain that 

will end up in the sewer depends on the type and quality of the sewer system. 

• A combined system carries water from all types of sources. This system will be 

affected by rainfall and the WWTP needs to be ready to handle large 

fluctuations in flow.  

• In a duplicate system wastewater and stormwater are led in separate pipes. This 

diverts the stormwater flow to the recipient (river, sea or lake) instead of the 

WWTP.  

• The separate system leads the stormwater by other means than a pipe. Instead, it 

may for example be transported through a ditch and apprehended in a local 

treatment system.  

The sewer system may have a basin or an overflow system that creates an unnatural and 

nonlinear relationship between rainfall and inflow to the WWTP (Svenskt Vatten 2013). 

Extraneous water leak into the sewer system through cracks and joints, make a rainfall 

event more likely to increase the flow in all types of sewer system but with different 

magnitudes. On average the inflow to Swedish WWTP is twice as high as the registered 

water consumption indicating leakage into the sewer or usage of a combined system.  

2.1.4. Catchment of Avedøre WWTP 

The urban catchment of Avedøre WWTP covers 184 km2 out of which 125 km2 is 

connected to the sewer system (BIOFOS 2016). The catchment of Avedøre WWTP had 

in 2015 a population of 254 399 inhabitants and in 2025 the population is expected to 

have increased to 278 000. The municipalities serviced by Avedøre WWTP are 

Albertslund, Ballerup, Brøndby, Glostrup, Herlev, Hvidovre, Høje-Taastrup, Ishøj, 

Rødovre and Vallensbæk. The water management features within the catchment are 

presented in Figure 1. The dark blue line shows the catchment border, and the black line 

shows the border of the 10 municipalities. The wastewater is transported by the main 

pipes to Avedøre WWTP. 
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Figure 1: Map of Avedøre catchment showing the location of Avedøre WWTP, the sewer system by 

type, municipality borders and the catchment border. 

In Figure 1 the separate system is shown in green, and the combined system is shown in 

brown. The basins that relieves the sewer system when storm water accumulates 

because of rainfall are shown as blue squares. Given the distribution of basins, it 

becomes quite clear that the combined sewer system is substantially more affected by 

storm water than the separate sewer system. 

Water consumption data from six of the municipalities in 2014 indicate that households 

consume roughly 60-80% of the water and the remaining 20-40% is mainly consumed 

by industries and institutions. Water consumption data provides an estimate of the 

wastewater sources. 

2.2. X-BAND RADAR 

The short response time in an urban catchment makes high temporal and spatial 

resolution of the precipitation data important to enable accurate forecasts (Einfalt et al. 

2004). This is especially important when measuring peak flows from intensive short 

lived and local weather (Thorndahl et al. 2017). Errors in precipitation data accounts for 

a large part of the uncertainty when modelling the rainfall-runoff relationship.  

Precipitation measurements are carried out by rain gauges or by weather radar. These 

two techniques are fundamentally different when measuring precipitation and thus have 

different sources of error (Shellart et al. 2012). A rain gauge measures precipitation 

intensities directly in one spot while radar measures the reflectivity of rain particles 

continuously over a larger area.  
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The implementation of radar precipitation measurement has improved the monitoring of 

rainfall temporal and spatial variation (Beven 2001). A radar measures precipitation 

indirectly and has antennas that rotate while they send beams of electromagnetic pulses 

that are reflected by particles along their projected routes. It is assumed that the return 

signal is highly dependent of the precipitation intensity. The main variable that is 

measured is the reflectivity (Z) and it must be converted to rainfall rate (R) by a Z-R 

relationship (Einfalt et al. 2004). Depending on the type of rain different relationships 

are used. More advance radar systems also incorporate doppler and polarimetric 

measurements allowing better management  of errors (van de Beek et al. 2010). 

2.2.1. Radar data 

Radar data are stored in a three-dimensional polar coordinate system with the radar in 

centre (South et al. 2019). The radar beam width is often 1 degree in azimuth leading to 

a variation in width from 100 metres to 1 kilometre depending on the distance from the 

radar (Einfalt et al. 2004), therefore the spatial accuracy will be higher closer the radar. 

The radar does not measure rain at the ground level and usually it measures on different 

elevation angles (Schellart et al. 2012). Data storage is also an issue. The X-band radar 

data used in South et al. (2019) produced 60 megabytes of data every minute. The total 

data over a 72-day period added up to 6.48 terabytes.   

2.2.2. Sources of error and correction 

The reflectivity is affected by the size of the rain droplets. Droplet sizes varies between 

different types of rainfalls making it important to correct the reflectivity – rainfall 

relationship with measurement of droplet size distribution (van de Beek et al. 2012). By 

relating the rain gauge measurement to radar a correction factor can be used to the 

earlier defined Z-R relationship (Achleitner et al. 2008). Correcting radar data with rain 

gauges has proven to be useful, but this relationship is based on a simplified assumption 

that radar and rain gauges are homogenous in time and space. 

Since radar measures reflectivity with radar beams that are angled upwards into the air it 

is not certain that the measured rain will fall directly to the ground (Beven 2001), 

especially when winds are strong. With increasing distance from the radar, the angle of 

the radar beam will cause the measurement to occur on a higher altitude. This might 

cause the beam to overshoot the rain (Scheller et al. 2012). 

Attenuation is the dampening of the radar beam through absorption of particles (Shellart 

et al. 2012). This problem can turn up with high intensity rain because of the increased 

number of particles. Any measurement beyond an event that causes attenuation will be 

underestimated or even blocked. For high frequency radar, such as X-band radar, 

attenuation becomes a significant problem (Einfalt et al. 2014). Radar will also measure 

disturbances such a clutter and background noises (Langfeld et al. 2014). Trees, houses 

and hills are examples of static clutter, and birds, insects, and other radar beams 

examples of dynamic clutter. Clutter often gives high reflectivity values. Background 

noises include atmospheric noises and noises from within the radar electrical circuits. 

There are many correction algorithms that try to filter out errors caused by attenuation, 

cluttering and background noises. More advanced techniques make use of data from 
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polarimetric and doppler radar data that are insensitive to attenuation and gives greater 

insights to clutter and attenuation detection (van de Beek et al. 2012; Thorndahl et al. 

2017). They can reduce error further but not completely remove them.  

The X-band radar that measured the rain intensity used in this project was installed by 

HOFOR early 2017 on top of a fire station. The X-band radar model is a WR-2100, 

produced by FURUNO (Furno 2021). WR-2100 is a compact dual polarimetric X-band 

doppler weather radar. WR-2100 is one of the smallest weather radars and it is aimed to 

measure local clouds within a 30 km radius, but it observes data up to 50 km radius. The 

radar data are interpolated to a cartesian grid system of desired spatial resolution and 

with a lowest possible resolution of 100x100m. The data from the HOFOR X-band 

radar are interpolated into a spatial resolution of 500x500 meters and temporal 

resolution of 1 minute. The measurements from the radar ended in June 2020 when the 

radar station was taken out of use.  

2.3. MACHINE LEARNING 

The exponential increase of computer power accelerates our journey towards a data 

driven society where massive amounts of observed data are stored. Machine learning 

algorithms can find patterns and relationships between the data to optimise the utility of 

technology and services (Guttag 2017). Whereas traditional programming finds the 

desired output signal by using a fixed model with sample data as its input signal, 

machine learning uses sampled data as both the input and output signal to find the 

model without knowing the details of the system. If the physical relationship between 

the input and output is delayed, such as the relationship between rainfall and runoff, this 

allows for the output to be forecasted ahead of time from the observed input data.   

In this project two machine learning models are compared. The first model is the Linear 

Regression Model (LRM) which was developed in the field of statistics and assumes a 

linear relationship between the observed data. The second model is the neural network 

(NN) which is mathematically inspired by the neural network in our brains 

(Kartalopolous 1996). 

2.3.1. Training and Validation 

The goal with machine learning is to train a model such that it can predict from input 

signals, that it has not previously been trained upon, with the least deviation from the 

true output. Within the scope of this project the input signal are primarily rain data and 

the output signal are flow data.  The available data are usually divided into a larger 

training set and a smaller validation set to ensure that the model is not exclusively fitted 

to the trained data.  

The way in which a model can change its output is by varying the weights that 

transforms input data into output data. To find the ideal set of weights one must first 

define a criterion of what constitutes a better model. This criterion is called the loss 

function. There are many types of loss functions, but the general idea is to minimize the 

error between the output signal and the prediction (Carlson & Lindholm 2019). 

Informetics software uses a negative log likelihood loss function (L) shown in equation 
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(1) (Larochelle 2013). The prediction is not a single value, but a normal distribution that 

has a mean and a standard deviation. ώό  means the likelihood of the prediction ώό 

containing the output signal y. u is the input signal. 

 ,ώόȟÙ  ÌÎ ώό   ( 1)  

To maximize the likelihood, we want to minimize the negative likelihood in equation 

(1) (Starmer 2017).  The set of weights that minimizes the negative log likelihood loss 

function provides the best solution for the given model and results in the lowest loss 

value. Changing the weights will result in a different mean and standard deviation for 

the same set of input signals. 

Informetics software provides both a loss value for the training and for the validation. 

Training the model on the complete data set one time is called an epoch. Each epoch 

should result in a lower loss value otherwise no additional learning has taken place. 

When the loss has reached a plateau, a minimum has been reached (Sanderson 2017). If 

the model is complex, there might exist multiple local minimums that the training can 

converge  towards as shown in Figure 2. Finding the global minimum is not guaranteed 

but through training with different learning settings a new optimal solution might be 

reached.   

 
Figure 2: Graph of a complex loss function where the loss value varies by altering a single weight value.   

2.3.2. Neural network  

The architecture of a Neural Network can vary greatly from one to another and the 

Neural Network presented in this project is just one amongst many. The fundamental 

building block of the neural network consists of the node that corresponds to the neuron 

in the brain. The nodes are distributed in different layers (see Figure 3). The first layer 

from the left is the input layer where each input data set (u) corresponds to one node. 
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The last layer is the output layer where the red node corresponds to the prediction. The 

two layers in the middle in Figure 3 are called the hidden layers and every node in one 

of the layers is connected to all nodes in the previous layer for this Neural Network. 

Changing the number of layers and the number of nodes within a layer creates a more or 

less complex neural network.  

 
Figure 3: A fully-connected neural network consisting of 4 input signals, 2 hidden layers with 3 nodes 

each and 1 prediction node (output layer). Each node is connected to all the nodes in the previous layer 

where each connection has a weight (multiplier) attached to it. Training occurs when the loss function (L) 

is minimized.  

In the brain the electrical potential difference created by chemical processes in the 

synapses determines if a neuron is activated or not (Kartalopoulos 1996). Similarly, the 

nodes in a neural network have an activation function (not shown in the Figure 3) 

attached to them that determines what the sum of the data from the nodes in the 

previous layer must be to activate the node (Starmer 2021) and pass through the data. 

The activation function used in Informetics software is a rectified linear unit (reLu). It 

transforms all negative values to zero and all positive values are kept the same (Starmer 

2020). It is a simple and effective way of making the training process go faster than 

with other activation functions. 

Each connection also has a weight attached that scales the data coming from each 

previous node. These are the weights that are being trained to optimize the model with 

regards to the loss function. The algorithm that is used in Informatics software is called 

the back-propagation algorithm and basically it starts with optimizing the weights 

attached to the last layer and then the second-to-last layer and so on (Kartalopoulos 

1996).  



10 

 

Additional to the model itself there are hyperparameters that determine the properties of 

the training process. The hyperparameters that can be altered in the Informetics software 

are listed below with an explanation of their purpose. To find the optimal training of a 

model the impact of these hyperparameters needs to be evaluated. 

• Number and size of hidden layers: The structure of the Neural Network. More 

hidden layers and more nodes within each layer means more weights to be 

optimized. 

• Number of Epochs: Number of times the complete data set will be trained 

upon. More epochs leads to a more time consuming training session.  

• Learning rate: Decides how much the weights may change when training on 

one batch of data points. Figure 4 shows the loss function progression with a fast 

learning rate (left) compared to a slow learning rate (right).  

• Learning rate decay: Reduces the learning rate as the training progresses to 

avoid overshooting the loss function minimum. If learning rate decay is set to 0 

the learning rate will remain constant. 

• Learning rate decay steps: Determines how often the learning rate decays.  

• Hidden dropout rate: Randomly discards nodes during training. This is done to 

reduce the risk of overfitting the model.  

• Batch size: Amount of data points that are trained in one instance. Larger batch 

size means fewer times during an epoch that the weights are optimized by the 

back-propagation algorithm.  

 
Figure 4: Optimization of a loss function with fast learning rate (left) and a slow learning rate (right). 

Each triangle indicates one epoch. 

2.3.3. Linear regression model 

The simplest mathematical model to describe a relationship between two variables is to 

infer a linear relationship (Chetwynd & Diggle 2011). In comparison with the neural 

network the linear regression model has only one input layer and one output layer 

without any activation functions in-between. Instead, there is one weight to be 
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optimized for each connection between a node in the input layer and a node in the 

output layer. 

Models that use previously measured data of the output as an input signal are called 

autoregressive (Carlsson & Lindholm 2019). The ARX model stands for 

AutoRegressive model with an eXternal input. This is the linear regression model that 

best resembles the model used in this project, using both rain data and old flow data to 

predict the flow in the future.  

An example of an ARX-model is described in equation (2). The a:s are the weights that 

model the relationship between the previous output signal y and the prediction ώ . The 

b:s are the weights that model the relationship between the two input signals (or 

external data) u1 and u2 and the prediction ώ. t is equal to discrete time and k is the lead 

time. 

 ώὸ Ὧ  ὥώὸ ὥώὸ ρȣȢὥώὸ ὲ

 ὦȟό ὸ   ὦȟό ὸ ρȣ ὦȟό ὸ ὲ

 ὦȟό ὸ ὦȟό ὸ ρȣ ὦȟό ὸ ὲ 

( 2)  

   

2.3.4. Lead times 

Since the models are supposed to produce a forecast of a future flow, they also need to 

optimize their weights for that relationship. In Informetics software the lead times are 

defined as time shifts. This means that the output signal (flow) is shifted with the 

intended lead time compared with the input signal and is trained in the same way as if 

the flow was the current flow. 

To save computational time, models of different lead times can be trained at the same 

time. This is done by simply adding additional nodes to the output layer. The 

consequence of this is shown in Figure 5. The neural network (right) that has hidden 

layers will share the model structure (same weights) until the last hidden layer. For the 

linear regression model (left) this will have no effect since the node in the input layer is 

transformed directly onto the nodes in the output layer.  
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Figure 5: Linear regression model (left) with multiple forecasts of different lead times.Neural network 

(right) with multiple forecasts of different lead times. The number of weights between the input layer and 

hidden layer stays the same.  

3. METHOD 
The method section is divided into three parts. The first part presents the data and how 

the delimitation of the different datasets was conducted. The second part presents how 

the learning processes of the different machine learning models were conducted. The 

third part presents the evaluation method that the comparison of the models was based 

upon.  

3.1. DATA AND INPUT  

3.1.1. Flow data 

The sewer flow data were provided by BIOFOS and covers the period of January 1, 

2017 to June 30, 2020. The registered data points represent the pumping rate at the inlet 

to Avedøre WWTP, with a one-minute sampling time. The pumps are one by one 

activated by the water level of an adjacent basin and are either turned on full effect or 

turned off. Consequently, the flow time series will have stepwise shifts in flow. This 

also means that the time series will have a lot of periods of different length with zero 

flow.  

Figure 6 presents two histograms of the probability density function (pdf) of flow rates 

from two different condition. The left histogram relates to flow rates from rainy 

condition and the right histogram relates to flow rates from relative dry conditions. The 

first peak of the histograms ranges from about 30 m3/min to 45 m3/min and corresponds 

to one active pump in the inlet of the WWTP. The second peak ranges from about 60 

m3/min to 85 m3/min and corresponds to two active pumps. Because of the flow rate 

variability for each pump the peaks representing three or more active pumps becomes 

less distinct. The mean flow during the entire period, including both rain flow and dry 

flow periods, was 50 m3/min and the mean flow during solely dry flow period was 38 

m3/min.  
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Figure 6: Histograms showing flow rate probability density function (pdf) by prevalence of rain. Left 

histogram represents rainy periods and right histogram represent dry periods.  

Even though the right histogram, representing dry flow, shows considerably fewer flow 

rates corresponding to three pumps or more, these higher flow rates are present and 

make it harder to distinguish between rain flow and dry flow periods. A comparison of 

how the flow time series present itself during a dry flow period and a rain flow period is 

shown in Figure 7. Even during intense rain periods, the flow can for shorter periods 

shift to zero (left plot). The opposite occurs during the dry flow period (right plot) 

where there is no flow during longer periods and then suddenly it shifts to over 100 

m3/min to compensate for a shorter period with no active pumps. Additionally, the flow 

data consists of 2.2 % of datapoints with unknown flow. The longest consecutive period 

with no flow data is 14.6 days and starts at 19 December, 2018.  

 
Figure 7: Examples of flow variation for a rain flow period (left plot) and for a dry flow period (right 

plot). 

In the project the flow data were used both as an input signal and the output signal of 

which the prediction was trying to recreate.  
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3.1.2. Rain data 

The rain data used in the project were measured by the X-band radar owned by HOFOR 

and is presented in Section 2.2.3. The radar data were downloaded through the VeVa 

api, made by Dryp. The temporal resolution of the data is 1-min and the spatial 

resolution was 500x500 meters. The catchment of Avedøre WWTP was 580 km2 

corresponding to approximately 2320 radar data points. Even though it is fully possible 

to use every datapoint as an individual input signal for the models, the project used 

different delimitations of radar data aggregates.  

The strategy of evaluating how the extent of rain data impacts the performance of the 

forecast was done in two steps.  

1. The first step investigated if the models could make use of the spatial distribution of 

rain data. This was done by comparing catchment rain data aggregated into one single 

rain data file with rain data aggregated into 10 rain data files from the 10 municipalities 

within the catchment. This allows to put different weights on rain data from different 

areas, which could be needed given the large catchment as well as the different sewer 

systems. The corresponding areas of the rain data files from within the catchment can be 

seen in Figure 8. The green dots represent every single data point. Given the different 

sizes of the municipalities the different files will be based on varied amount of data 

points.  

 
Figure 8: Radar data delimitation inside catchment. A green dot corresponds to a single radar data point.   

2. The second step investigates if rain radar data from outside the catchment improve 

the ability to make better predictions based on the best model from the previous step. 

This is done by comparing the model based on radar data from the catchment with 
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additional radar data within 20 kilometres and 30 kilometres from the radar station. The 

delimitation for 0-20 kilometres rain radar data and 20-30 kilometres radar was done in 

8 parts each. Figure 9 shows the delimitation done for the radar data from outside the 

catchment. Since the catchment already covers large areas west of the radar station these 

rain files will be made up of considerably smaller amount of data points than the eastern 

areas. 

 
Figure 9: Radar data delimitation outside catchment. The first letter corresponds to the main point of the 

compass the second letter corresponds to the secondary point. The number indicates how far away in 

kilometres the data stretches from the radar station. 

A table that summarises the rain data files can be found in appendix Section 8.1. Table 

7 in Section 8.1 shows that among the different rain data files there are great variation in 

registered precipitation. The radar detected least rain towards the south west and most 

rain towards the north. The span of the total measured precipitation during the time 

periods for the rain files ranges from 2.91E+02 (sv30) to 5.35E+03 mm (Rødovre). 

 

The different sets of rain data that will be compared as input signal for the models are 

referred to as:  

• Full catchment rain data (FC): A single rain data file consisting of a mean made 

from 926 data points delimited by the Avedøre WWTP catchment border. 

• Municipalities rain data (MUN): 10 rain data files consisting of means made 

from 31 to 225 data points delimited by the municipalities within Avedøre 

WWTP catchment, 
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• 20 kilometres rain data (MUN_20): Based upon MUN and adding 8 more rain 

data files consisting of means each made from 352 to 715 data points delimited 

by the outer areas 20 kilometres from the catchment. 

• 30 kilometres rain data (MUN_30): Based upon MUN_20 and addings 8 more 

rain data files consisting of means each made from 653 to 859 data points 

delimited by the outer areas between 20 to 30 kilometres from the catchment. 

As mentioned in Section 2.2.2. there are a few common errors associated with high 

resolution radar. With increasing distance from the radar station, the risk and occurrence 

of inaccurate data, due to for example attenuation or cluttering, also increases.  

Figure 10 shows how the radar seems to fail in the registration of data, thus leaving gaps 

in the data. The errors that exist within the flow data and the rain data can all be deemed 

as being random noise that models will have to contend with.  

 
Figure 10: Example of a rain time series that is clearly impacted by errors.   

3.1.3. Additional input signals 

Beyond using flow data and the rain data as input signals to predict the flow in the 

future, additional input was created. These inputs were three different periodic functions 

indicating the time of year, the time of week and the time of day supporting trends 

recurring due to human activity. Since the response between rain and flow is not instant, 

rolling means of the data were added with different durations. These durations were set 

to 1, 2, 4, 8, 24 hours.  

The lead times in the project were set to 0.5, 1, 3, 5 and 7 hours. The interesting aspect 

using these lead times when comparing the models is to pinpoint which model and 

dataset yields the least delay when determining the shift of the flow rate due to 

infiltration of rain. The shorter lead times (0.5 and 1 hour) will provide references on 

what the expectation of the longer forecast should be. 

3.2. MODEL TRAINING 

The model training process consisted of optimizing each model type and rain data 

combination with regards to the hyperparameters described in Section 2.3. First the full 

catchment and municipalities rain data were to be trained with both the LRM and the 
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NN. This led to four different sets of hyperparameters to be determined to optimize the 

training of each model data combination. Based on the optimal model and dataset from 

the first step two additional models were to be trained based on rain data files including 

areas within 20 kilometres and 30 kilometres from the radar station. In total 6 models 

were to be trained.  

The data used in each model were divided into a training data set and a validation data 

set. The validation data set consisted of data from the first 10 days of each month. The 

training data set consisted of data from the remaining days of each month. The reason 

for the division is to distribute training and validation over the full period such that the 

daily, weekly, and yearly variation of the wastewater production are equally present for 

both data sets. It is also assumed that there is not a substantial variation within one 

single month. 

3.2.1. Hyperparameter optimization 

The evaluation of which hyperparameter setting that yielded the optimal training was 

based on three factors: validation loss, training loss and stability. Training loss indicates 

how well the model predicts the training data set and validation loss indicates how well 

the model predicts the validation data set. Since the training is performed only on the 

training data set the training loss is usually lower than the validation loss. If training 

loss is much better, then it indicates that the model has been overfitted to the training 

data. If the validation is better, it indicates that the model is too generalised and the 

validation data set being easier to predict. Stability of training considers how the loss 

improves over the course of the training  . As the training progresses it is important that 

the loss becomes lower otherwise no training has occurred. If the loss oscillates it 

indicates that the model cannot find a low point. Examples of both stable and unstable 

training can be seen in Figure 11. Even though the training is unstable, the loss value 

might have ended on a low point. Evaluation of which hyperparameter is optimal is 

therefore a qualitative process, keeping both the stability of the training and the lowest 

possible loss value in mind.  

 
Figure 11: Training progress showing unstable training (left) and stable training (right). 
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Since the LRM does not have the hidden layer structure like the Neural Network there 

was no need to optimize the number of layers, number of nodes and the hidden dropout 

rate for that model. Still there were lots of possible hyperparameter combinations to be 

considered. To reduce the time spent on testing different hyperparameter sets, 

knowledge learned from training the first model was used for later training thus 

reducing the possible values for the hyperparameters which were tested. How the 

training was affected by varying the value of a single hyperparameter was done for all 

hyperparameters at least once. Also, the interdependency of the hyperparameters 

learning rate, learning rate decay, and learning rate decay steps was investigated. The 

number of epochs used in training were selected to ensure that the training and 

validation loss had reached its lowest value.  

The hyperparameters that were tested and the maximum range of variables that were 

tried are summarised in Table 1. Summary of the conclusions from testing each 

hyperparameter are presented in appendix Section 8.2. Section 8.2 also includes the 

final hyperparameter settings used for training each model. 

Table 1: Presents the maximal value range that was tested for each hyperparameter.  

Hyperparameter Range 

Layers 0 - 2 

Nodes 8 - 256 

Epochs 10 - 60 

Learning rate 0.1 - 1E-5 

Learning rate decay 0 - 2 

Learning rate decay steps 100 - 1E+6 

Hidden dropout rate 0 - 1 

Batch size 16 - 128 

 

3.2.2. Resulting model  

The largest model used in this project was a neural network with a single hidden layer 

consisting of 64 nodes and using 26 rain data files (MUN30) for input signals. This 

model is presented in Figure 12 where the rain data files are denoted P, flow data are 

denoted Q, the periodic function indicating the time is denoted T, the prediction is 

denoted ὗ, and the nodes are denoted N. There are 5 predictions that uses 5 different 

lead times (k = 0.5h, 1h, 3h, 5h, 7h).  Each input data sources uses the instantaneous 

value at time t as an input signal together with 5 different rolling means of past data. 

The rolling means are represented with an added dash above the abbreviations of the 

input signals.  
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Figure 12: Largest model structure used in this project. There are 165 input nodes (blue) and for each 

input data set 5 additional rolling mean input signals are created from historic data. The hidden layer 

nodes are shown in white. The predictions are shown in red, and the output signals are shown in green. 

The weights (arrows) are modified to optimize the loss function L.  

In total there are 165 different input signals leading to 10 560 weights between the input 

layer and the hidden layer. Also, each input signal is duplicated, and the duplicate is 

used to identify where in the time series there are non-existing values. The prediction, as 

mentioned in section 2.3, contains both a mean and a standard deviation that results in a 

duplication of nodes in the output layer. The actual number of weights that is trained for 

each model is presented in appendix section 8.2.  

3.3. EVALUATION 

The minimization of the loss function on which the training of the models is based upon 

is a measure of how well the forecast match the real flow as presented in Section 2.3.1. 

Since the intent of the forecast is to give a forewarning to Avedøre WWTP on when the 

sewer flow will switch from a dry flow to a rain flow the main performance to evaluate 

is timing. As mentioned in the introduction the control of the processes in response to 

the different flows is not continuous but rather a discrete on/off-function. This makes 

the precision of the forecast secondary to timing given that the flow rate is high enough 

to indicate a rain flow. The performance parameters that were used in this project are 

flow shift timing, relative volume, and MAE. These parameters are defined bellow.  

• Flow shift timing is simply a comparison between the timing of the flow shift by 

the measured flow and by the forecast. Its purpose is to indicate how well the 

forecast can predict the timing of when a rain produces a substantial increase in 

flow and thus letting the WWTP know when to adjust the treatment processes.  



20 

 

• Relative volume is the comparison of the accumulated flow over the evaluation 

period between the forecast and the real flow. The forecast volume will be 

measured from when the shift of the forecast is deemed to have occurred. The 

relative volume shows how well the model approximates the flow.  

• MAE is the comparison between the measured flow and the forecast at every 

timestep. This evaluates how precisely the forecast predicts the flow time series.  

3.3.1. Selecting rain periods for evaluation 

The first issue is to identify the rain periods of the flow time series. Given the 

characterization of the flow in Section 3.1.1. this is not a straightforward process since 

dry flow periods may provide periods of high flows and rain flow periods might have 

shorter breaks with no flow. Low intensity rain that are prolonged and not concentrated 

within a single period might result in a less distinctive switch of flow periods. The 

method used to identify rain flow periods are therefore initially set up to find all periods 

that may be representative of when a switch from dry flow to rain flow occurs. 

Following that a qualitatively analysis of these periods is done graphically. In the 

analysis, the periods with flows that show a clear shift from dry flow to rain flow in 

response to rainfall are selected and provided with a time stamp for that shift.  

The quantitative identification process of the rain periods evaluates the rain and flow 

timeseries based on a set of threshold values. The variables that must reach these 

threshold values to start the possible rain period are: 

• Instant flow rate (ὗ),  

• Mean flow of the upcoming 15 minutes (ὗ ) 

• Mean flow of the upcoming 60 minutes (ὗ ) 

• The accumulated rain during the last 6 hours. (ὖ ) 

Three different flow rates are chosen to avoid the risk of choose a point of a sudden 

increase that decreases soon afterwards, given the nature of the flow time series. The 

rain duration of 6 hours is chosen with regards to the response time of the catchment. 

When all threshold values were triggered the timing of the flow shift was set at that 

moment. Finding the end point was done by searching for the time-point when the mean 

of the rain flow period had returned to bellow 80m3/min, given that the flow mean at 

some point was above that. Otherwise, the end point trigger was set right between the 

highest flow mean of that period and the threshold value that started the period.  

The value of the threshold used in this project is presented with explanation in the 

following list.  

• The value for all flow thresholds was set to 60 m3 per minute. Making sure that 

at least two pumps or more were active during the period.  

• The threshold value for the accumulated rain during the last 6 hours was set to 

10 mm, which approximately corresponds to a rain which is likely to occur a 

slightly more seldom than once a month according to Dahlström (2006).  
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The rain periods that were identified through the quantitative process then were, one by 

one presented graphically. The aim was to select rain flow periods that showed a clear 

shift from dry flow to rain flow. Only the timespan around the start was analysed since 

it was that point that the performance evaluation was going to be based upon. Example 

of a rain flow period that shows a clear flow shift can be seen in Figure 13. First there is 

a compact and intense rain fall that 4 hours later at time zero provides a sharp increase 

in the flow. Example of a rain flow period that was deemed to be a bad representation of 

a shift from dry flow to rain flow is presented in Figure 14. The flow rate is already high 

before the rain fall and therefore the point of the shift cannot be decided.  

 
Figure 13: Example of a distinct shift from dry flow to rain flow. 

 
Figure 14: Example of a bad representation of a shift from dry flow to rain flow. The flow is already 

high, and this potential evaluation period must be disregarded.  

A summary of all the rain periods that were selected to evaluate the performance of the 

model are presented in appendix Section 8.3.  
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3.3.2. Evaluation method 

When the training of a model was completed, a csv-file containing time series for all 

forecasts at each lead time was created. These time series then wereevaluated with 

regards to the real flow within the evaluation periods. Both the forecast and the flow 

time series have a considerable amount of random noise which makes the comparison of 

the time series hard to assess.  

Therefore, the time series were smoothed by moving average of all the data points ten 

minutes ahead and ten minutes behind. This removed almost all zero value flow rates 

during the studied periods. Before smoothing 3.7 % of the flow data points were zeros 

and after smoothing 0.3 % of the flow data points remained zero. An example of how 

the time series changed with smoothing can be seen in Figure 15 where each plot shows 

rain, flow and two forecasts one with 0.5-hour lead time and the other with 5-hour lead 

time - left plot before smoothing and right after. The rain time series are not shown in 

the figure and were not smoothed.  

 
Figure 15: Flow and forecast time series before (left) and after smoothing (right).  

For the evaluation of the forecast, starting points indicating a shift into a rain flow 

period needed to be determined. To stay consistent with the threshold values chosen to 

define the real rain flow period, the same value was chosen to define the shift of a 

forecast. Even though the time series where smoothed there was still oscillation which 

created multiple points of possible shifts within reasonable time frames from the rain 

weather. Therefore, every forecast was presented graphically, and the most feasible 

point of shift was selected. This process is shown in Figure 16 where the best guess is 

shown by the green vertical dashed line. The threshold value of 60m3/min is shown by 

the green horizontal dashed line. 



23 

 

 
Figure 16:  Determining timing of the flow shift for the 7h forecast at the evaluation period starting 27 

September, (red vertical line). The timing is shown by the vertical green line and the threshold value 

defining the flow shift is shown by the horizontal green line. The rain is shown in orange and the 

wastewater flow is shown in blue.  

If the forecast already was in a rain flow period by the definition given, this forecast 

was not evaluated within that evaluation period. 

Flow shift timing was calculated by subtracting the timing of the flow shift for the real 

flow with the timing of the shift for the forecasted flow.The ideal value is zero and 

negative value means that the forecast gave indication of a flow shift ahead of the real 

shift. A negative value is considered to be better than a positive value since a delay 

would mean shorter time to adjust the treatment processes.  

The relative volume was calculated by dividing the accumulated volume of the forecast 

with the corresponding volume of the real flow. The accumulation of the forecast began 

at its defined start point. The ideal value is one and corresponds to when the forecasted 

volume is equal to the real volume.  

The mean absolute error (MAE) was calculated with equation 3 (Bowerman et.al 2005). 

The sum of all the absolute differences between the output signal y(t) and the prediction 

ώὸ, at each instance t, is divided with the number n timesteps of the evaluation period. 

The ideal value is zero meaning that the forecasted flow and the real flow is equal at 

each time-step.  
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4. RESULTS 
The result section is divided into two parts. The first part presents the performance 

comparison between the linear regression model and the neural network together 

withthe comparison between the full catchment rain data set and the municipalities rain 

data set.  The second part presents the performance comparison for the rain data sets 

with rain data from outside the catchment.  

 

The results from the hyperparameter tuning are summarised in appendix section 8.2. In 

short, the hyperparameters that were tuned for each model were epochs, hidden layers, 

nodes and learning rate. Learning rate decay was discarded due to not significant 

improvements and the training strategy focused on a slow learning rate together with 

more epochs. Meaning that the training was relatively long and slow to ensure stable 

training. Hidden layer dropout rate and batch size were set to fixed values. The LRM 

was trained on 20 epochs while the NN was trained with 50-60 epochs because the NN 

needed longer time to converge to the lowest value of the given training set up.  

 

The comparison between the different models was supported by a Wilcoxon rank sum 

test to examine if the differences shown in the median is significantly. A 5% significant 

level was used in this project. The Wilcoxon rank sum result is shown in Appendix 

8.4.1 to 8.4.5 where each subsection presents the results for one evaluation parameter. If 

the p-value is above 5% then there is not enough evidence to assume that the difference 

is significant between two models.  

4.1. Part 1: Comparison of LRM and NN 

The result from the first part that focuses on the performance comparison between the 

linear regression model and the Neural Network using two types of delimitation of rain 

data are presented by each evaluation variable.  

4.1.1. Flow shift timing  

The results of how the forecasts in part 1 performed regarding the flow shift timing is 

summarised in Table 2. The different lead times are presented row wise, and the 

different models are presented column wise. The performance is given by the median 

timing error over the 31 evaluation periods together with the inter quartile range 

showing an indication of the spread. The optimal value is 0 or slightly negative given 

that the real flow has some lag in response. The table shows thatshorter lead times are 

better at timing the flow shift and between the 3 hours and 5 hours lead there is a 

substantial deterioration where the timing of the flow shift is predicted to occur later 

than the actual shift. 
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Table 2: Summary from part 1 of the flow shift timing result from the 31 evaluation periods in the form 

of median and inter quartile range (IQR). MUN = municipalities rain data, FC = full catchment rain data. 

LRM = linear regression model, NN = neural network 

 MUN - LRM MUN - NN FC - LRM FC - NN 

Lead 

time[h] 

Median 

[h] 

IQR 

[h] 

Median 

[h] 

IQR 

[h] 

Median 

[h] 

IQR 

[h] 

Median 

[h] 

IQR 

[h] 

0.5 0.21 0.87 0.18 0.51 -0.14 1.02 0.22 0.50 

1 0.30 0.98 0.38 0.62 -0.13 1.01 0.32 0.60 

3 -0.16 0.91 -0.16 0.68 -0.53 1.14 -0.40 0.86 

5 0.60 1.09 0.74 0.93 0.68 1.09 0.63 1.11 

7 2.56 1.08 2.28 1.03 2.63 1.07 2.44 1.13 

 

To get a better visualization of the differences between the different models the results 

summarised in Table 2 are presented in Figure 17 as box plots. The data is grouped by 

lead times of 3 hours, 5 hours and 7 hours and the different box plots within a group 

corresponds to the different models. The figure shows no substantial differences 

between the different models. There is slightly more spread amongst the models based 

on the full catchment rain file and slightly more spread for the LRM when predicting 

the 3-hour lead time compared to the NN. The Wilcoxon rank sum test with a 5% 

significant level (Appendix 8.4.1) showed no significant differences in the medians 

across the different model for each lead time.   

 
Figure 17: Box plot of the flow shift timing of different lead times (outer groups) and different models 

(inner groups). Whiskers are maximum 1.5 of the IQR. Outliers are shown as red dots. M = municipalities 

rain data, F = full catchment rain data. L = linear regression model, N = neural network 

4.1.2. Relative Volume 

The result from the relative volume evaluation is first summarized in Table 3 and then 

visualized as box plots in Figure 18. Both the table and the box plots show a clear 

difference between the LRM and the NN. This is reinforced in the Wilcoxon rank sum 
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test in Appendix 8.4.2 by showing significant differences in the medians among all lead 

times when comparing LRM and NN-based models.  The LRM was able to almost 

perfectly represent the total volume that passed through during the evaluation period. 

The NN slightly underestimated the volume. All models showed low spread. The 

differences between the dataset showed a slight underestimation by the rain data 

delimited by municipalities. The significance of the difference between the two data set 

was only shown when using the Neural Network. 

Table 3: Summary from part 1 of relative volume result from the 31 evaluation periods in the form of 

median and inter quartile range (IQR). MUN = municipalities rain data, FC = full catchment rain data. 

LRM = linear regression model, NN = neural network 

 MUN - LRM MUN - NN FC - LRM FC - NN 

Lead 

time[h] 

Median  IQR Median  IQR Median  IQR Median  IQR 

0.5 1.00 0.04 0.94 0.03 1.00 0.04 0.97 0.04 

1 1.00 0.04 0.93 0.03 1.01 0.04 0.96 0.04 

3 1.00 0.06 0.91 0.05 1.04 0.09 0.96 0.07 

5 0.99 0.07 0.90 0.07 1.04 0.10 0.95 0.08 

7 0.95 0.07 0.87 0.07 1.00 0.08 0.91 0.08 

 

 

 
Figure 18: Box plot of the relative volume for different lead times (outer groups) and different models 

(inner groups). Whiskers are maximum 1.5 of the IQR. Outliers are shown as red dots. M = municipalities 

rain data, F = full catchment rain data. L = linear regression model, N = neural network 

4.1.3. Mean absolute error (MAE)  

The results from the MAE are summarised in Table 4 and visualized in Figure 19. A 

lower MAE value means that the model more precisely represented the flow. The 

Neural Network model seems to perform somewhat better, especially with longer lead 
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times. The Wilcoxon rank sum test (Appendix 8.4.3) showed that the medians of the 

MAE-results was significantly different between the LRM and the NN. 

 The differences between the two rain data sets are low. Visually, there is a slight 

improvement for the full catchment rain file, but this improvement was not significant. 

The MAE values of 3 and 5 hours lead times are quite similar followed bya larger jump 

in the 7-hour lead time. The mean flow rate of most evaluation periods is 80 m3/min 

(because of the evaluation period definition). The lowest median MAE-value of 12.30 

m3/min is 15.4 % of the average mean flow rate of the evaluation periods. The highest 

median MAE-value of 28.49 m3/min is 35.6 % of the average mean flow rate of the 

evaluation periods.  

Table 4: Summary from part 1 of the mean absolute error result from the 31 evaluation periods in the 

form of median and inter quartile range (IQR). MUN = municipalities rain data, FC = full catchment rain 

data. LRM = linear regression model, NN = neural network 

 MUN - LRM MUN - NN FC - LRM FC - NN 

Lead 

time 
Median IQR Median  IQR  Median  IQR  Median  IQR  

h m3/min m3/min m3/min m3/min m3/min m3/min m3/min m3/min 

0.5 15.00 3.68 13.63 3.15 14.75 3.40 12.30 3.04 

1 15.14 4.04 14.59 3.39 14.77 3.73 13.50 3.79 

3 21.20 5.44 17.81 4.63 20.28 4.60 17.42 5.27 

5 23.48 6.81 19.39 4.91 22.89 6.01 19.95 5.65 

7 28.77 9.18 24.29 6.70 28.49 8.01 25.79 8.08 

 

 
Figure 19: Box plot of the mean absolute error of the different lead times (outer groups) and different 

models (inner groups). Whiskers are maximum 1.5 of the IQR. Outliers are shown as red dots. M = 

municipalities rain data, F = full catchment rain data. L = linear regression model, N = neural network 
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4.1.4. Overall comparison  

To represent the results from the large number of evaluation periods  two new time 

serieswhere created. The first oneis the average of the 10 time series from the 

evaluations periods with the lowest rain intensity The second includes the average of the 

10 periods with the highest rain intensity. The rain intensity is the maximal intensity 

found within the 6 hours leading up to the start point of the evaluation period (= the 

flow-shift). In Figures 20 and 21 these two types of periods are shown side by side.  

In Figure 20, the LRM and NN are compared using the full catchment with a 5 h lead 

time. Their average is presented with the interval given by one standard deviation from 

the mean. The high intensity period on the right shows an extreme overshoot of the 

LRM together with a large variation. The NN on the other hand is somewhat 

underestimating the flow in the beginning of the period. Both models predict the 

retention of the flow quite well. For the low intensity period on the other hand there is a 

slight overestimation of the flow after the initial top. Both the LRM and the NN seems 

to answer more readily to high intensity rain than to low intensity, this is shown in the 

figures by the shifts in the low intensity period occurring later.  

 
Figure 20: Evaluation period average where periods with low intensity rain is shown on the left plot and 

periods with high intensity rain is shown on the right. The models which are compered are linear 

regression model (Lin in figure) and neural network (NN) both using full catchment data. The lead time is 

5 hours. 

Figure 21 compares the LRM with the NN using the rain data delimited by 

municipalities. The most distinct change from Figure 20 is that the LRM overshoots 

have been dampened a bit. There also seems to be a bit less variation for the full 

catchment rain file. In comparison between LRM and NN the same trends are show. 

That is less overshoot and less variation by the NN. 
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Figure 21: Evaluation period average where periods with low intensity rain is shown on the left plot and 

periods with high intensity rain is shown on the right. The models which are compered are linear 

regression model (Lin in figure) with neural network (NN) both using municipalities (MUN) rain data. 

The lead time is 5 hours. 

4.2. PART 2: EXTENDED RAIN RADAR DATA 

The results from the second part investigating if increased range of rain radar data could 

improve the performance when using longer lead times. Only NN was used for this 

investigation. 

4.2.1. Flow shift timing  

Table 5 summarises the results regarding flow shift timing for part 2. The models left to 

right use increasing amount of rain data. The table shows decreasing flow shift lags with 

increased data for the lead times of 5 and 7 hours. This is also true for 3 hours lead time 

where increasing negative value is shown with added rain data. The median flow shift 

timing has improved by about 20-30 minutes when comparing the rain data kept within 

the catchment with the farthest use of rain data of 30 kilometres. This is also shown in 

Figure 22 which reinforces the closing of the flow shift timing with the intended timing. 

Regarding the Wilcoxon rank sum test (Appendix 8.4.4) the only significant difference 

in median is shown between the original data set and the 30km data set at a 5-hour lead 

time. The differences between the models using the other two lead times lay slightly 

above the significance threshold of 5%.  
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Table 5: Summary from part 2 of the flow shift timing result from the 31 evaluation periods in the form 

of median and inter quartile range (IQR). MUN_20/30 = municipalities rain data with extended range (20 

km and 30km), NN = neural network 

 MUN - NN MUN_20 - NN MUN_30 - NN 

Lead 

time[h] 

Median 

[h] 

IQR 

[h] 

Median 

[h] 

IQR 

[h] 

Median 

[h] 

IQR 

[h] 

3 -0.16 0.68 -0.33 0.71 -0.44 0.65 

5 0.74 0.93 0.51 0.80 0.34 0.86 

7 2.28 1.03 2.18 0.84 1.79 0.91 

 

 
Figure 22: Box plot of the flow shift timing of different lead times (outer groups) and different models 

(inner groups). Whiskers are maximum 1.5 of the IQR. Outliers are shown as red dots. M/20/30 = 

municipalities rain data with extended range (20 km and 30km), N = neural network. 

4.2.2. Mean absolute error (MAE) 

The results from the MAE in part 2 are summarised in Table 6 and visualized in Figure 

23. When comparing the 20 km rain data with the original municipality rain data set 

there seems to be no improvement at all, perhaps evena slight deterioration. But the 30 

km rain data performs better for every lead time for both median and IQR. But this 

improvement is not proven to be significant when regarding the Wilcoxon rank sum test 

in Appendix 8.3.5. The median MAE-values range from 16.7 m3/min to 24.6 m3/min 

and are therefore 21% - 31% of the average mean flow rate of the evaluation periods. 

 

 

 

 



31 

 

Table 6: Summary from part 2 of the mean absolute error result from the 31 evaluation periods in the 

form of median and inter quartile range (IQR). MUN_20/30 = municipalities rain data with extended 

range (20 km and 30km), NN = neural network 

 MUN - NN MUN_20 - NN MUN_30 - NN 

Lead 

time[h] 

Median 

[m3/min] 

IQR 

[m3/min] 

Median 

[m3/min] 

IQR 

[m3/min] 

Median 

[m3/min] 

IQR 

[m3/min] 

3 17.81 4.63 17.26 4.78 16.66 4.56 

5 19.39 4.91 19.54 6.06 17.51 4.55 

7 24.29 6.70 24.63 7.49 22.40 6.20 

 

 
Figure 23: Box plot of the mean absolute error of the different lead times (outer groups) and different 

models (inner groups). Whiskers are maximum 1.5 of the IQR. Outliers are shown as red dots. Outliers 

are shown as red dots. M/20/30 = municipalities rain data with extended range (20 km and 30km), N = 

neural network. 

4.2.4. Overall comparison  

Looking at the evaluation period average in Figure 24 there are no large differences 

between the models when looking at the 5-hour lead time. There are slight gains for the 

flow shift timing with the 30km rain data that also got slightly higher flows. The timing 

is also clearly better for the high intensity period. 
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Figure 24: Evaluation period average where periods with low intensity rain is shown on the left plot and 

periods with high intensity rain is shown on the right. The models which are compered are neural network 

(NN) with municipalities rain data and neural network with 30 km radius rain data. The lead time is 5 

hours.  
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5. DISCUSSION 
The aims of this project were to compare the performance of a neural network with a 

linear regression model and to investigate what extent of X-band rain radar data 

improves the performance. The performance evaluation was case specific and evaluated 

by the ability of providing a forecast of the sewer flow into Avedøre WWTP with 

regards to the treatment process control system. The control system was a binary switch, 

either being set up to handle dry flow or to handle rain flow. Therefore, the most 

important information that the forecast should provide was the timing of when a flow 

switch occurs. Also, forecasts with longer lead time give Avedøre more opportunity to 

adapt its processes before the real flow switch occurs. In this project, the performance 

means how well the different models could forecast the 31 rain flow events with respect 

to three performance parameters. The first parameter was the timing of the shift from 

dry flow to rain flow. The flow shift threshold was set to 60 m3/min. The second 

parameter was the approximation of the flow by calculating the relative volume of the 

forecasted flow compared with the real flow during that period. The third parameter 

were the precision of the forecast compared to the flow shown as the mean absolute 

error (MAE).  

 

5.1 PART 1: Comparison of LRM and NN 

The flow shift timing results from part one, which compared the NN with the LRM 

while using two different delimitations of rain data, showed that the median delay of the 

forecasts with 5 hours and 7 hours lead time were in the range of 0.60-0.74 hour and 

2.28-2.63 hours. Given these ranges of delay the greatest possible lead time could be 

narrowed to 4.26-4.72 hours. Since the measured flow is somewhat delayed this range 

can be regarded as a slight overestimate.  Comparing the models at lead times 3-5 hours 

from Figure 17 there were no significant difference in the median of the flow shift 

timing results. This show that both the NN and LRM were able to predict a flow 

response of sufficient magnitude equally well. It also showed that adding information 

about the spatial distribution within the catchment did not improve the prediction of the 

flow shift considering all the 31 evaluation periods. There might, however, exist 

individual periods where this added information of spatial distribution could be useful.  

Findings from the performance regarding relative volume in Table 2 and Figure 18 

showed that the LRM was good at approximating the flow when regarding the full 

evaluation period corrected by flow shift timing for all lead times. The NN on the other 

hand underestimated the volume and this became worse with longer lead times. The 

difference between the rain data sets were not as large as between the NN and the LRM 

but there was a trend that the municipalities rain data set performed worse than the full 

catchment rain data set.  

The MAE performance results found in Table 3 and Figure 19 showed instead an 

opposite trend where the NN had a significant lower median value and lower IQR for all 

lead times compared with the LRM. This shows that the NN can more precisely predict 
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the real flow than the LRM. The difference in MAE performance between rain data set 

was not significant. When using the LRM, the municipalities rain set were slightly 

worse for all lead times compared to LRM/Full catchment combination. The NN 

combined with municipalities on the other hand were slightly better for the two longest 

lead times. The conclusion which may be drawn from these results is that the 

delimitation of the rain data by municipalities did not improve the forecast but if 

multiple data sets are to be used, the Neural Network seems to perform better. This 

could be because of the capability of the Neural Network to sort the input signals into 

multiple relationships that could be activate for different scenarios. But to prove this 

point the weights within the model should be examined to evaluate how the hidden 

layer was utilised.  

These finding was also clearly shown in Figures 20 and 21 where the plot for the LRM 

forecast greatly overshoots the real flow at the early stage where as the NN is much 

more conservative and perhaps somewhat underestimating the initial rise in flow. The 

figures only show the first 18 hours from when a flow shift occurs and do not really 

show the point of when the LRM starts to underestimate the flow which it must do 

given the initial overshoot to get a relative volume close to 1. Since the precision is 

worse but the approximation is better for the LRM this means that the positive error 

cancels the negative error. The NN on the other hand trades the approximation of 

volume with being reasonably close to the real flow over the full period.  

Also shown in Figures 20 and 21 was that forecasts where better at determining the flow 

shift at periods with high intensity rain. This is promising given that it is the high 

intensity rains that causes the most damaging rain flows.  

5.2. PART 2: EXTENDED RAIN RADAR DATA 

Part 2 of this project investigated if additional rain data from outside the catchment 

improved the forecast. Especially if forecast with longer lead times which failed at 

timing the shift in the previous part can shorten their delay. The additional two models 

were both Neural Networks and used the municipalities rain data set with added rain 

data up to 30km of the X-band radar station.  

A slight improvement of the flow shift timing could be shown when the rain data range 

was increased (table 5 and Figure 22). With 5 hours lead time the improvement in the 

median using the 30km rain data set were 0.40 hours (24 min) and this improvement 

was significant when regarding the Wilcoxon rank sum test. With a 7 hour lead time the 

corresponding improvement in the median were 0.49 hours (29 min), but this was not 

significant. These findings indicate that it may be worthwhile using additional data that 

could train the model on secondary spatial relationship. The maximum range of rain 

data that could help to improve the forecast cannot be determined from the present 

results and need to be investigated further. Too far a distance might make the forecast 

more uncertain since the realisation of rain far away contributing to the sewer flow will 

be less likely.  
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The results of the MAE performance show almost identical results between the 20km 

rain data set and the original rain data set. Instead, there are a distinct improvement 

when regarding the 30km rain data set compared to the original. There is no clear 

explanation to why this is. It might be impacted by the hyperparameter optimization of 

the respective model or it might be just chance since the training of the models is not 

deterministic. But it at least shows that these additional information does not deteriorate 

the precision of the forecasts. When looking at Figure 24 the differences between the 

models are quite small. The 30 kilometres rain data set seems to have gotten a slight 

increase in the overall flow estimation compared with the original rain data set. The 

figure also suggest that the main improvement of flow shift timing occurred for the low 

intensity rain periods. 

5.3. ERROR SOURCES  

5.3.1. Flow data error 

The flow data were used both as the output and input signal, making the model 

autoregressive. When the model trains using the flow data it assumes that the historic 

data is correct and thus tries to optimize the weights to fit the data overall. Since the 

flow data did not represent the natural flow of the sewers but instead were measured by 

the pumping rate at the inlet to Avedøre WWTP this resulted in the occurrence of high 

flow rates at periods which were regarded as dry flow periods and flow rates equal to 

zero at rain flow periods. This was enabled by the foregoing basin which could collect 

water before pumping it into the WWTP. The forecasts which try to recreate the flow 

will have both reduced precision in flow rate and an additional delay in response time. If 

the flow rate would instead have been measured at the basin inlet the uncertainties 

would have greatly decreased by eliminating the randomness which the pumping 

control strategy imposed. But non-linear processes upstream would still have an impact 

by providing random noise to the flow time-series.  

5.3.2. Rain data error  

The rain data measured by X-band radar also had errors tied to it, just as the theory 

about X-band radar suggests. The main error which was shown in this project was the 

occasional attenuation of the signal which caused gaps in the time series data. Also, the 

decreasing amount of data points further the distance from the radar station suggests 

that the error was higher for the outer data sets. But it can also be a consequence of 

more clutter and very low rates of precipitation is being registered close to the X-band 

radar. The direction of the rain measurement relative to the radar also gave different 

amount of data indicating different error sources in different directions.  

If the error was just a dampening factor on the data which would remain roughly the 

same size within the same data set this would not be a problem. This is because every 

single data is given initially an individual weight by the model and can therefore correct 

the impact of that dampening. If the error varies across time the instances where the 

error occurs will cause the forecast to undervalue the impact of the rain and therefore 

risk missing the flow shift.  
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The high-resolution data were aggregated into rain data files that corresponds to larger 

areas. The comparison was done between two sets of aggregated data of different 

resolution. Even though it might point towards that some resolution is better than the 

other it does not show if the high resolution is necessary for this purpose. But since the 

quality of the aggregates is based on each data point there could still be a reason to have 

a local and accurate radar that can measure a high intensity rain fall. 

5.4. APPLICATION TO AVEDØRE WWTP 

The forecasts in this project were made with regards to the practical application of 

informing the wastewater treatment plant of Avedøre of when the sewer flow is affected 

by rain such that the efficiency of the treatment processes is deteriorated or even 

harmed. Given that the control strategy is binary the most important variable of the 

forecast to consider is when the sewer flow rate threshold is likely to be passed. The 

results in this project suggests that a flow shift could be forecasted with a lead time in 

the range of 3-5 hours. The uncertainty increases of course with longer lead times 

making it wise to utilise multiple lead times to correct the information as the flow 

realises itself. Including a larger range of rain data seems to increase the ability to make 

longer forecasts.  

The implementation of a neural network-based forecast into the operational function of 

a wastewater treatment plant requires the input data sources to be on-line and quickly 

transferred to the neural network so it can compute a forecast as soon as possible. The 

short computational time is one of the strengths of a neural network and this helps to 

reduce the delay between measurement and forecast.  

After the forecast has been made there is a second problem of how to interpret the 

information into a decision in the treatment control. The interpretation can be made by 

an operator or directly by a computer. It is important that this interpretation is made 

with respect to what the forecast can show and what the intended goals with the 

treatment control are. The flow rate that the neural network predicts is made with a 

certain amount of uncertainty and must be considered when taking further decisions. 

The neural network used in this project also provided the forecast with a standard 

deviation of the flow rate and gives some information of how certain the model is for 

each prediction value, but this was not considered in this project.  

In this project only a sub selection of rain flow periods was used to evaluate the forecast 

performance. But to fully analyse the utility of the forecast made by a neural network it 

is necessary to formulate a distinct definition how the forecast will be interpreted 

continuously, and this definition will also be a factor of the performance. By evaluating 

the performance based on the definition it is interesting to see the number of times that 

the real flow is of a magnitude that would necessitate a shift in the operational mode but 

that the forecast did not detect or was substantially missed. 

Another aspect that was not analysed in this thesis was the occurrence of false negatives 

that means the times when the forecast predicts a future rain flow that is not realised. 

The cost of a false negatives is the added energy and resource consumption made by an 
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operational shift in the treatment processes. To many false negatives might also reduce 

the trust in the forecast by the operator and might lead to the dismissal of the correct 

prediction. The optimal interpretation of the forecast should minimize the number of 

false negatives while also maximizing the number of flow-shifts accurately predicted 

ahead of time.  

Phenomena such as changing climate, water usage and the occasional extreme weather 

situation will impact the nature of the rain and wastewater flow. If a neural network or 

another machine learning model would be implemented the initial training on historical 

data would perhaps not age well enough with time. Then it would be necessary to 

occasionally retrain the model on the newer data or implement a self-learning 

mechanism which updates itself. 

5.5. FUTURE STUDIES 

One aspect that was not investigated in this project were the number of false alarms 

which may have been activated if the forecast would have indicated a flow shift when it 

did not occur. Given the nature of the flow data this would of course have been 

somewhat hard to detect within the scope of this project since it is possible that the 

basin at the WWTP would have acted as a buffer and what would have been an intense 

flow over a shorter time becomes instead a small increase over a longer time period. 

The results in this project were not able to show that utilising spatially delimitated rain 

data improved the forecast in any substantial manner. Since this project did not 

investigate the rain fall events individually it was hard to determine if there were rain 

fall events that may have varied greatly over the catchment. Therefore, it would be 

interesting to see a study which evaluates delimitation of X-band rain radar data of 

different resolution with regards to rain falls of high intensity that vary across the 

catchment. 

The need for qualitative assessments in this project with regards to model training and 

performance evaluation reduced the ability to test more model structures and evaluate 

more rain flow periods. To utilise the efficiency of the machine learning models it 

would be optimal if the performance parameters would be directly implemented into the 

model. Since the loss function only provides a performance estimate over the full time 

series adding additional parameters might secure the optimal training for the intended 

goal. If this process is properly automatized this would allow for more training sessions 

to take place, thus increasing the likelihood that the optimal model is found.  
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6. CONCLUSION 
The results in this project showed no substantial differences between the Neural 

Network and the Linear Regression model at determining the time of the flow shift, 

which corresponds to the response time of the catchment. When using a lead time of 5 

hours the median flow shift timing of both models was delayed by about three quarters 

of an hour. This indicates that the longest possible lead time for forecasting Avedøre 

WWTP is slightly above 4 hours. The neural network was better at predicting the flow 

at one single instance whereas the linear regression model was better at approximating 

the flow over the full period.  

Using X-band rain data from areas up to 30 km from the radar station improved the 

median time shift difference in the range of 20-30 minutes indicating that increasing the 

rain data range might be useful when forecasting the sewer flow with longer lead times. 

Determining the maximum range of rain data which helps to improve the performance 

needs further investigation.  

The delimitation of the rain data within the catchment area showed no improvements to 

the forecast compared to using all rain data as a single aggregate when considering all 

31 rain flow events. But the results showed that the Neural Network were better at 

creating forecasts made from multiple rain data files compared with the Linear 

Regression Modell.  

An additional finding of interest was that the flow shift of high intensity rain periods 

was better timed than low intensity rain periods. This increases the benefits of 

forecasting since the most problematic flows were forecasted with higher precision.
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8. APPENDIX 

8.1. RAIN DATA SUMMARY  

Table 7: Summary of each rain data file used as input signals in this project. 

Data files radar 

data 

points 

sum rain 

mm 

minutes 

with rain 

<0.5 

mm/h 

0.5 - 4 

mm/h 

>4 

mm/h 

name nr mm min % % % 

Full Catchment 926 3.57E+03 1.28E+06 92.6 6.7 0.7 

Albertslund 111 3.82E+03 2.57E+05 66.3 28.7 5.0 

Ballerup 106 3.80E+03 9.01E+05 90.4 8.3 1.3 

Brøndby 94 4.10E+03 2.83E+05 68.1 26.8 5.0 

Glostrup 65 4.58E+03 3.45E+05 72.9 22.2 4.8 

Herlev 70 4.24E+03 1.10E+06 92.1 6.8 1.2 

Hvidovre 31 4.60E+03 2.41E+05 61.1 32.1 6.8 

Høje-Taastrup 225 2.33E+03 2.17E+05 71.0 26.3 2.8 

Ishøj 135 3.21E+03 2.55E+05 68.7 27.4 3.9 

Rødvre  37 5.35E+03 5.28E+05 77.0 19.4 3.5 

Vallensbæk 52 2.13E+03 6.42E+05 91.7 7.3 1.0 

NV20 572 2.13E+03 6.42E+05 91.7 7.3 1.0 

VN20 462 2.25E+03 2.12E+05 73.7 23.0 3.3 

VS20 352 1.96E+03 1.85E+05 72.2 24.8 3.0 

SV20 631 9.79E+02 1.59E+05 82.0 16.7 1.3 

SE20 622 1.69E+03 7.20E+05 93.7 5.7 0.6 

ES20 715 1.14E+03 5.72E+05 94.1 5.5 0.4 

EN20 659 1.17E+03 8.52E+05 95.9 3.8 0.3 

NE20 635 1.41E+03 7.51E+05 94.6 5.0 0.4 

NV30 846 7.04E+02 9.57E+04 79.2 19.0 1.8 

VN30 811 6.91E+02 8.76E+04 77.7 20.2 2.1 

VS30 846 3.70E+02 4.96E+04 79.6 18.3 2.1 

SV30 859 2.91E+02 4.81E+04 84.1 13.9 1.9 

SE30 811 6.20E+02 9.18E+04 81.9 16.2 1.8 

ES30 795 4.11E+02 8.89E+04 86.2 12.9 0.8 

EN30 653 4.11E+02 7.25E+04 83.9 15.1 1.0 

NE30 737 4.36E+02 8.37E+04 84.6 14.4 1.0 

 

  



43 

 

8.2. HYPERPARAMETER TUNING SUMMARY 

Summary of the hyperparamter tuning process. 

• Layers & Nodes: Generally increasing nodes could improve the loss value. But 

especially when training MUN20/MUN30 models the training loss became far 

better while the validation loss became worse. This indicates that the models 

were overfitted to the training data set and could not generalize enough to 

predict on the validation data. Adding an additional layer did not seem to 

improve the loss much but both 1 and 2 layers were used in the final training of 

the different models. The conclusion was to test nodes and layers for each 

model.  

• Number of Epochs: The epochs were chosen with margin to ensure that the loss 

values reached an equilibrium. Linear regression model required far less epochs 

than the neural network.  

• Learning rate: The linear regression model could be trained with far higher 

learning rate than the neural network. High learning rates could give low loss 

values but with an unstable training progression. Low learning rates led to a 

higher loss but a stable training progression, even with large number of epochs 

the loss equilibrium tended to remain somewhat higher. Learning rate became 

the hyperparameter that was most intensively tested for each model.  

• Learning rate decay: Adding learning rate decay did not seem to improve the 

loss value any substantially. What could happen were that the training progress 

became a bit more unstable (jumpy). The conclusion was to turn learning rate 

decay off and instead start the training with a low enough learning rate.  

• Learning rate decay steps: Same reasoning as learning rate decay.  

• Hidden layer dropout rate: No substantial difference was detected. For the 

neural network a value of 0.4 was set for all models.  

• Batch size: Larger batch size decreased the time to run each epoch. Larger 

values gave slightly worse loss value. No substantial difference for batch size 16 

- 64. The conclusion was that all models were to have the same batch size of 32.  

Table 8: Summery of the hyperparameter used to train each model and their resulting loss value and 

structure.  

 MUN MUN FC FC MUN20 MUN30 

 LRM NN LRM NN NN NN 

Hidden Layers - 1 - 2 1 1 

(HL)Nodes - 128 - 64 64 64 

Epochs 20 50 20 60 60 60 

Learning rate 1E-4 5E-5 1E-4 5E-5 5E-6 5E-6 

Learning rate 

decay 
0 0 0 0 0 0 

Learning rate 

decay steps 
- - - - - - 
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Hidden 

dropout rate 
- 0.4 - 0.4 0.4 0.4 

Batch size 32 32 32 32 32 32 

Training loss 1.011 0.9687 1.016 0.9683 1.031 1.024 

Validation loss 1.029 0.9994 1.029 0.9777 1.07 1.077 

Input signals 144 144 36 36 240 336 

Output signals 10 10 10 10 6 6 

Total amount 

of weights 
1 450 19 850 370 7 178 15 814 21 958 

Training time 5m 59s 25m 45s 5m 50s 29m 47s 22m 35s 23m 9s 
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8.3. EVALUATION PERIODS SUMMARY 
Table 9: Summary of the 31 evaluation periods. T = duration in hours. P-6h_sum = accumulated rain 6h 

before the period start. P-6h_max = max rain intensity 6h before the period start. Q-6h_mean = mean 

flow rate 6h before the period start. Q_mean = mean flow rate of the evaluation period. Q_max = max 

flow rate of the evaluation period. 

Evaluation periods T P-6h 

sum 

P-6h 

max 

Q-6h 

mean 

Q 

mean 

Q 

max 

nr Start Stop h mm mm/h m3/mi

n 

m3/mi

n 

m3/mi

n 

1 
2017-03-

18 05:40 

2017-03-

19 06:21 
24.7 10.4 5.4 42.9 80.0 156.5 

2 
2017-03-

20 19:42 

2017-03-

24 06:01 
82.3 10.0 5.7 57.1 80.0 184.0 

3 
2017-04-

15 08:41 

2017-04-

17 18:25 
57.8 14.2 6.0 42.5 80.0 201.6 

4 
2017-04-

29 03:58 

2017-05-

04 14:24 
130.5 20.7 6.9 38.7 80.0 225.5 

5 
2017-06-

07 00:44 

2017-06-

10 08:44 
80.0 10.0 5.0 44.6 71.1 188.9 

6 
2017-07-

21 01:11 

2017-07-

22 18:31 
41.4 10.0 4.4 37.2 69.5 195.3 

7 
2017-07-

23 15:08 

2017-07-

25 17:33 
50.4 14.6 7.5 32.4 81.2 193.1 

8 
2017-07-

30 07:13 

2017-08-

01 15:47 
56.6 12.0 11.8 26.1 80.0 175.7 

9 
2017-08-

03 11:04 

2017-08-

09 01:21 
134.3 10.0 4.6 29.9 80.3 225.9 

10 
2017-11-

02 02:08 

2017-11-

03 23:12 
45.1 10.0 9.0 53.7 80.5 179.9 

11 
2017-11-

22 02:56 

2017-12-

02 12:56 
250.0 10.0 6.3 50.1 80.3 216.1 

12 
2018-01-

28 01:20 

2018-01-

29 23:54 
46.6 10.0 4.1 47.8 82.5 181.3 

13 
2018-04-

25 09:07 

2018-04-

27 20:51 
59.8 22.6 14.7 31.2 79.6 194.4 

14 
2018-10-

23 05:00 

2018-10-

24 02:41 
21.7 16.6 4.8 31.7 79.9 181.4 

15 
2018-11-

11 08:22 

2018-11-

11 19:51 
11.5 11.9 4.3 25.5 80.0 176.2 

16 
2018-11-

12 16:11 

2018-11-

13 12:08 
20.0 12.5 7.3 40.7 80.0 177.0 

17 
2019-05-

17 10:25 

2019-05-

18 08:15 
21.9 14.3 11.1 24.3 80.0 203.3 
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18 
2019-05-

21 03:57 

2019-05-

22 02:58 
23.0 16.6 16.9 35.6 80.0 206.8 

19 
2019-05-

26 19:51 

2019-05-

27 06:53 
11.1 14.5 10.9 42.7 80.0 145.3 

20 
2019-06-

12 05:51 

2019-06-

16 11:56 
102.1 21.1 23.5 32.6 80.0 223.3 

21 
2019-07-

08 08:30 

2019-07-

09 11:38 
27.2 16.3 8.5 22.4 80.0 209.4 

22 
2019-07-

31 08:29 

2019-07-

31 18:47 
10.3 13.8 4.9 31.3 80.0 142.3 

23 
2019-08-

13 08:08 

2019-08-

14 13:27 
29.3 13.6 16.4 23.0 67.0 198.2 

24 
2019-08-

17 09:39 

2019-08-

17 17:57 
8.3 13.2 6.2 22.4 80.0 230.1 

25 
2019-09-

01 01:11 

2019-09-

01 21:54 
20.7 17.9 29.4 33.8 80.0 206.1 

26 
2019-09-

10 07:41 

2019-09-

14 04:12 
92.5 14.0 10.0 32.3 80.0 204.7 

27 
2019-09-

27 07:56 

2019-09-

28 19:07 
35.2 18.6 11.4 23.8 80.0 204.7 

28 
2019-10-

08 09:16 

2019-10-

09 04:50 
19.6 14.6 9.0 25.0 80.0 210.5 

29 
2020-05-

23 01:29 

2020-05-

23 14:06 
12.6 10.4 5.8 36.8 80.0 206.9 

30 
2020-06-

05 02:39 

2020-06-

06 22:13 
43.6 33.2 16.2 33.4 80.1 216.8 

31 
2020-06-

19 08:17 

2020-06-

22 10:21 
74.1 25.2 28.3 24.9 80.0 188.5 
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8.4. Wilcoxcon rank sum test 

8.4.1 Part 1-Flow shift timing  

 

Table 10: Shows the 

wilcoxcon rank sum test 

result between the flow 

shift timing results of all 

the used models and lead 

times from part 1. Each 

model-lead time 

combination exists in both 

the row and the column 

and each cell shows the 

Wilcoxon value between 

the result of the model 

found in the related row 

and the model found in the 

related column. A value 

above 5% (0.05) indicates 

that there are no substantial 

differences between the 

median of the respective 

results.  

Model abbreviations: FC = 

full catchment (dataset) 

M = municipalities 

(dataset) 

L = Linear Regression 

Modell 

N = Neural Network, 0.5-7 

h = lead time 
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8.4.2 Part 1-Relative volume  

 

  

Table 11: Shows the 

wilcoxcon rank sum test 

result between the relative 

volume results of all the 

used models and lead times 

from part 1. Each model-

lead time combination 

exists in both the row and 

the column and each cell 

shows the Wilcoxon value 

between the result of the 

model found in the related 

row and the model found 

in the related column. A 

value above 5% (0.05) 

indicates that there are no 

substantial differences 

between the median of the 

respective results.  

Model abbreviations: FC = 

full catchment (dataset) 

M = municipalities 

(dataset) 

L = Linear Regression 

Modell 

N = Neural Network, 0.5-7 

h = lead time 
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8.4.3 Part 1-Mean absolute error (MAE) 

 

  

Table 12: Shows the 

wilcoxcon rank sum test 

result between the mean 

absolute error results of all 

the used models and lead 

times from part 1. Each 

model-lead time 

combination exists in both 

the row and the column 

and each cell shows the 

Wilcoxon value between 

the result of the model 

found in the related row 

and the model found in the 

related column. A value 

above 5% (0.05) indicates 

that there are no substantial 

differences between the 

median of the respective 

results.  

Model abbreviations: FC = 

full catchment (dataset) 

M = municipalities 

(dataset) 

L = Linear Regression 

Modell 

N = Neural Network, 0.5-7 

h = lead time 
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8.4.4 Part 2-Flow shift timing 

Table 13: Shows the wilcoxcon rank sum test result between the flow shift timing results of all the used 

models and lead times from part 2. Each model-lead time combination exists in both the row and the 

column and each cell shows the Wilcoxon value between the result of the model found in the related row 

and the model found in the related column. A value above 5% (0.05) indicates that there are no 

substantial differences between the median of the respective results.  

Model abbreviations: m0k = municipalities (dataset), m20k = municipalities + 20km data, m30k = 

municipalities + 30km data, n = Neural Network, 3-7 h = lead time 

 

 

8.4.5 Part 2-Mean absolute error (MAE) 

Table 14: Shows the wilcoxcon rank sum test result between the mean absolute error results of all the 

used models and lead times from part 2. Each model-lead time combination exists in both the row and the 

column and each cell shows the Wilcoxon value between the result of the model found in the related row 

and the model found in the related column. A value above 5% (0.05) indicates that there are no 

substantial differences between the median of the respective results.  

Model abbreviations: m0k = municipalities (dataset), m20k = municipalities + 20km data, m30k = 

municipalities + 30km data, n = Neural Network, 3-7 h = lead time 

 

 

 


