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ABSTRACT 

Hydrometeorological extremes in the Adige river basin, Italy 

David Gozzi 

This study aimed at describing the characteristics of daily precipitation and discharge 

extremes in the Adige river basin at the city of Trento. Annual maximum series for the 

period 1975−2014 were analyzed in terms of trends, seasonality indices and L-moments. 

A Mann-Kendall trend analysis showed a weak but significant signal of decreasing ex-

tremes; the percentages of sites with significant negative trends were overall larger than 

the significance levels. Precipitation extremes were characterized primarily by autumn 

storms, while floods had a stronger seasonality with peaks occurring predominantly in 

June and July which indicated that the timing not solely explained by rainfall maxima. 

The Adige basin was found to be a homogenous region with respect to precipitation, but 

the results did not support a corresponding assumption for discharge. A regional fre-

quency analysis was performed for precipitation data and found both the Pearson type III 

and generalized normal distributions to be adequate regional frequency distributions. The 

extreme daily precipitation at Trento with a 100-year return period was estimated to be 

between 114 and 148 mm/d. 

Keywords: Hydrometeorological extremes, precipitation, discharge, floods, seasonality,  

L-moments, regional frequency analysis, trend analysis, Adige river. 
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REFERAT 

Hydrometeorologiska extremvärden i Adigeflodens avrinningsområde, Italien 

David Gozzi 

Egenskaperna hos extremvärden av dygnsnederbörd och -vattenföring i Adigeflodens av-

rinningsområde vid staden Trento undersöktes. Serier med årsmaxima för perioden 1975–

2014 analyserades med avseende på trender, säsongsindex och L-moment. Trendanalys 

med Mann-Kendallmetod antydde en svag men signifikant signal om minskande extrem-

värden, då andelen mätstationer med signifikant negativa trender överlag var större än 

signifikansnivån. Den extrema nederbörden karakteriserades huvudsakligen av höststor-

mar, medan vattenföringen hade en starkare säsongsbundenhet då maxima inträffade 

främst under juni och juli. Vattenföringens extremvärden kunde därmed inte enbart för-

klaras av nederbördsmaxima. Avrinningsområdet kunde betraktas som en homogen reg-

ion för nederbörd, men resultaten gav inte stöd åt ett motsvarande antagande för vatten-

föring. En regional frekvensanalys genomfördes för nederbördsdata och visade att Pear-

son typ III och den generaliserade normalfördelningen var lämpliga regionala sannolik-

hetsfördelningar. Över Trento uppskattades den extrema dygnsnederbörden med en åter-

komstperiod på 100 år till mellan 114 och 148 mm/d. 

Nyckelord: Hydrometeorologiska extremvärden, nederbörd, vattenföring, säsongsindex,  

L-moment, regional frekvensanalys, trendanalys, Adigefloden. 
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POPULÄRVETENSKAPLIG SAMMANFATTNING 

Alperna är ett område som ofta är utsatt för extremväder och som upplevt flera svåra 

översvämningar de senaste åren till följd av häftiga regn. Flera av Europas större floder 

har sina källor här vilket gör att effekterna också drabbar områden nedströms. I november 

2014 orsakade en kraftig storm dödsfall och stora skador i Schweiz och i norra Italien. 

Efter regnoväder i augusti 2005 brast fördämningar till flera floder i Sydtyskland och 

många tvingades fly eller evakueras. Samtidigt omkom flera människor i Österrike och 

Schweiz efter att regnen utlöst jordskred. 

I Italien räknas ovädret 1966 som en av de allvarligaste väderkatastroferna under 1900-

talet. Stormen orsakade stora skador och många dödsfall i de centrala och nordöstra de-

larna av landet. Bland annat översvämmades staden Trento i Alperna som ligger längs 

Italiens näst längsta flod, Adige. För att motverka Adigeflodens skadeverkningar har man 

byggt vallar längs flodens sträckning genom Lagarinadalen och flera dammar i området 

kan dämpa höga flöden. Här finns även många hydrologiska och meteorologiska stationer 

som mäter vattenföring, nederbörd, temperatur och andra variabler. 

För att förebygga framtida översvämningar och dimensionera infrastruktur och byggnads-

verk är det viktigt att förstå sannolikheten att en händelse av en viss magnitud ska inträffa. 

En sådan uppskattning kräver att man känner till sannolikhetsfördelningen, det vill säga 

den matematiska beskrivningen av hur sannolika observationer av olika magnituder är. 

Analyser av statistik för uppmätta hydrometeorologiska variabler är ett vanligt sätt att ta 

reda på en sådan sannolikhetsfördelning, och därför en viktig del i bedömningar av över-

svämningsrisk. 

I det här arbetet undersöktes extremvärden av nederbörd och vattenföring i avrinnings-

området till Adigefloden ner till staden Trento. Analyserna har utförts på dataserier med 

årsmaxima, det vill säga de maximala dygnsvärdena som observerats varje år under peri-

oden. Metoderna bakom resultaten kan i korthet beskrivas enligt följande. (1) Sannolik-

hetsfördelningen för nederbörd togs fram genom en regional frekvensanalys. Ett vanligt 

problem med miljödata är att observerade serier av årsmaxima är korta. Regional frekven-

sanalys bygger på att serier från olika stationer kan slås ihop och bedömas tillsammans 

om de är tillräckligt lika, vilket gör en sådan metod lämplig för korta serier. De matema-

tiska parametrarna till fördelningen uppskattades med så kallade L-moment, som jämfört 

med andra metoder visats prestera väl då datamängden är liten. (2) En trendanalys ge-

nomfördes för att undersöka om årsmaxima har ökat eller minskat under den observerade 

perioden. Mann-Kendalls metod användes då denna inte kräver att serien är normalför-

delad, vilket sällan är fallet för miljödata. (3) Säsongsvariationen av årsmaxima för ne-

derbörd och vattenföring beskrevs med säsongsindex. De är mått på vilket tid på året som 

maxima inträffar i medeltal, samt hur mycket datumet varierar. 
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Tre huvudsakliga resultat kan lyftas fram. (1) Sannolikhetsfördelning för nederbörd vi-

sade på att den maximala dygnsnederbörden som kan väntas falla över Trento sett över 

en 100-årsperiod är mellan 114 och 148 mm/d. Detta kan användas i vidare studier som 

indata till modeller som kan beräkna flodens extremflöden, eller för bedömningar av kli-

matförändringars effekter på vattenresurser i regionen. Resultaten indikerar även (2) att 

magnituden av extremvärdena minskat under den undersökta perioden 1975–2014, samt 

(3) att det utöver extremnederbörd sannolikt är snösmältning som styr vilken tid på året 

som de högsta flödena inträffar. 
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1. INTRODUCTION 

The Adige river in the north-eastern Italian Alps had its latest severe flood in 1966 fol-

lowing a cyclonic storm considered to be the most important hydrometeorological event 

in Italy in the last century (Malguzzi et al., 2006). The synoptic scale storm caused dam-

ages and casualties over the whole of central and northeastern Italy, including the flooding 

of the town of Trento on the Adige river. 

Extreme precipitation and discharge events such as this pose considerable risks to human 

life, economy and infrastructure. In the Alpine region, large floods have been shown to 

be more frequent than in the past and may become even more frequent under global warm-

ing (Allamano, 2009). Although, predictions are particularly difficult to make here since 

data are sparse and the spatial variability of the hydrological environment is significant 

(Parajka, 2005). Even so, the spatial and temporal patterns of the extremes need to be 

characterized for flood risk analyses, assessments of climate change effects and water 

resource management. 

An important characteristic of hydrometeorological extremes is the seasonality, i.e. the ten-

dency for events to occur in certain parts of the year. Seasonality has an impact on both the 

precipitation inputs to a catchment and its soil wetness and therefore has a great influence 

on the magnitude and timing of annual maximum discharge peaks (Blöschl et al., 2013). 

The seasonality of hydrological processes has been the focus of recent studies on both the 

European scale (Blöschl et al., 2017; Parajka et al., 2010) and the scale of Alpine catch-

ments (Turkington et al., 2016). 

A common way to characterize extremes is by estimating the frequency of events. 

Knowledge of the magnitude and probable frequency of recurrence is needed for planning 

decisions. Especially for engineering purposes, frequency analysis of extreme hydrome-

teorological events is needed for proper design of structures such as dams, levees, water-

works and sewage disposal plants (Dalrymple, 1960). 

The statistical approach to frequency analysis of floods has been under debate since its 

introduction (see Klemeš (2000) and references therein), where a major criticism con-

cerns the extrapolation beyond the range of observations for higher return periods. The 

issue of short records can be mitigated by so called regional frequency analysis. Related 

samples of data can be analyzed together, as a region, if the event frequencies are similar 

(Hosking and Wallis, 1997). Thus, the large sampling errors associated with short records 

can be reduced. 

The use of L-moment statistics is a common approach in regionalization studies (e.g. 

Adamkowski, 2000; Hailegeorgis et al., 2013). Conventional moments such as mean, var-

iance, skewness and kurtosis describe the scale and shape of a probability distribution; L-

moments are analogues to these but have been shown to characterize a wider range of 
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distributions and having a better performance for small samples (Hosking and Wallis, 

1997). 

Central to regionalization is the concept of homogeneity, i.e. sufficiently similar fre-

quency distributions among the pooled samples. Regional analysis studies of extreme 

precipitation have found significant relationships between L-moments and mean annual 

precipitation, and successfully used this to group sites into homogenous regions (e.g. 

Schaefer, 1990; Di Baldassarre et al., 2006).  

The Italian VA.PI. project identified a nationwide approach for frequency analysis of ex-

treme rainfall and floods based on data records up to the 1980s (COST, 2012). The re-

sulting reference procedure for regional flood frequency estimation adopts the use of hi-

erarchical regions. Italy is delineated into regions of the first level, where shape parame-

ters are considered constant, and sub-areas of the second level where dispersion (e.g. var-

iance) is assumed constant. The Adige basin belongs to the Triveneto region which is 

considered homogenous at both the first and second level. Manfreda and Fiorentino 

(2008) applied the VA.PI. procedure to the Adige river and assumed the flood data to be 

homogenous, while a recent study of Triveneto finds this larger region to be heterogene-

ous (Persiano et al., 2016). It is therefore interesting to revisit the homogeneity assump-

tion for the Adige basin. 

1.1. PURPOSE AND RESEARCH QUESTIONS 

This study aimed at describing the characteristics of daily precipitation and discharge 

extremes in the Adige river basin down to the city of Trento. Annual maximum (AMAX) 

series for the recent 40-year period 1975-2014 were developed and analyzed in terms of 

temporal trends, their distributional properties and the seasonality of the events.  

The research questions were as follows. 

1. Do the AMAX series exhibit any trends?  

2. (a) Can the catchment be considered a homogenous region with respect to precipita-

tion and discharge? (b) If so, which frequency distribution is in accordance with the 

data? (c) And what are the expected precipitation depths or discharge peaks for return 

periods up to 100 years? 

3. (a) What does the sample L-moments say about the spatial distribution of the extremes 

in the catchment? (b) Is there a relationship between L-moments of precipitation ex-

tremes and the mean annual precipitation? 

4. (a) What is the seasonality of annual maxima and how strong is it? (b) What does the 

seasonality say about precipitation as a driving process of floods in the basin?  

(c) Have there been any shifts in the seasonal timing of extremes? 

1.2. LIMITATIONS 

- Only daily data have been analyzed. Available sub-daily series were found to be too 

short. 
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- Results can only describe flood characteristics in terms of precipitation, and not with 

regard to other flood generation process such as soil moisture and snow melt. 

- Minimum required length of record (20 years) was kept short due to scarcity of dis-

charge data. 

2. THEORY 

2.1. BLOCK MAXIMA 

The block maxima (BM) method is one of two fundamental approaches in extreme value 

theory, the other being peak-over-threshold (Ferreira and Haan, 2015). The BM method 

consists of dividing the observation period into equally sized and non-overlapping periods 

and restricting the analysis to the maximum observations in each period – e.g. annual 

maxima. Ferreira and Haan (2015) compared the two methods applied with L-moments 

(see section 2.8) and suggested that the BM method is generally more efficient under 

many practical conditions. 

2.2. FLOOD GENERATION PROCESSES  

Extreme rainfall processes are a form of climate forcing on flood generation (Blöschl et 

al., 2013). Events may be produced by smaller scale convective storms, covering a few 

kilometers and lasting a few hours or less with high intensities. They can also be produced 

by atmospheric mechanisms on larger scales caused by dynamic uplifting or, in moun-

tainous regions, by orographic effects. These storms cover larger spatial scales, have a 

longer duration and lower intensities. In colder regions, snowmelt and rain on snow events 

are important generation processes as well (Merz and Blöschl, 2003).  

The storm durations relative to the mean response time of a catchment is a key influence 

on flood peaks. The largest floods typically occur when the storm duration is equal to or 

greater than the response time of the catchment, since this may give rise to a resonance 

effect (Blöschl et al., 2013). 

2.3. TREND ANALYSIS 

The Mann-Kendall (MK) test is a nonparametric test for monotonic trends. Mann (1945) 

used the significance test of Kendall’s correlation coefficient τ with time as the independ-

ent variable. The test statistic S is computed for all possible data pairs and measures the 

monotonic dependence of the dependent variable y on time. It compares the number of 

pairs where y increases with time, and the number of pairs when y decreases with time. 

The null hypothesis of no change is rejected if S, and therefore Kendall’s τ of y versus 

time, is found to be significantly different from zero (Helsel and Hirsh, 2012). 

The MK trend test is often suitable for environmental data since it is robust to outliers 

and missing values, and no assumption of normality is required (Helsel and Hirsh, 2012). 

However, there must be no serial correlation for the p-values of the trend significance test 

to be correct. A positive serial correlation increases the likelihood of detecting a signifi-

cant trend when none may exist, i.e. a type I error in the significance test (Yue et al., 
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2002). The reverse is true for negative serial correlation, which may cause underestima-

tion of significant trends (type II error). Moreover, the presence of trends affects the de-

tection of serial correlation. Yue et al. (2002) suggests a modified MK test for serially 

correlated data which includes detrending the series prior to pre-whitening (i.e. removal 

of serial dependence), to accurately estimate the serial correlation. 

The rate of change of a trend can be assessed by the nonparametric slope estimator of 

Theil (1950) and Sen (1968). The null hypothesis is stated as a significant test for the 

slope coefficient β, in similar manner as for Kendall’s τ. Blöschl et al. (2017) use an 

adjusted β estimator for trend estimation of timing of annual maximum events, which 

accounts for the circular nature of dates. The slope estimator is calculated as the median 

of the differences between dates D over all possible pairs i and j in the AMAX series, 

𝛽 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝐷𝑗−𝐷𝑖+𝑘

𝑗−𝑖
) with 𝑘 =

−𝑚̅ 𝑖𝑓 𝐷𝑗 − 𝐷𝑖 > 𝑚̅/2

𝑚̅ 𝑖𝑓 𝐷𝑗 − 𝐷𝑖 < 𝑚̅/2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,   (1) 

where 𝑘 adjusts for circularity and 𝑚̅ is the average number of days per year (to account 

for leap years). D is given in day numbers (January 1 corresponding to D=1 and Decem-

ber 31 to D=365 or D=366). Unit of β is days per year. 

2.4. SEASONALITY ANALYSIS 

The seasonality analysis of annual maximum precipitation and discharge is based on di-

rectional statistics (Mardia, 1972) which can account for the fact that the first and last 

days of the year have adjacent values in the time series. Bayliss and Jones (1993) adapted 

the directional statistics for analysis of extreme hydrological events and introduced indi-

ces that reflect the mean date of occurrence of the events and its variability. Hall and 

Blöschl (2017) use the following procedure to estimate these indices. 

The date of occurrence Di of an event in year i is expressed as an angular value θi by 

plotting it on a unit circle in polar coordinates: 

𝜃𝑖 = 𝐷𝑖
2𝜋

𝑚𝑖
   where  0 ≤ 𝜃𝑖 ≤ 2𝜋,      (2) 

where Di=1 corresponds to January 1 and Di = mi to December 31, and mi is the number 

of days in year i. The mean x- and y-components of the sample of events are obtained by 

𝑥̅ =
1

𝑛
∑ cos (𝜃𝑖)𝑛

𝑖=1         (3) 

𝑦̅ =
1

𝑛
∑ sin (𝜃𝑖)𝑛

𝑖=1         (4) 

where n is the total number of events at a station. The mean date of occurrence Dmean at a 

station is defined as  
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𝐷𝑚𝑒𝑎𝑛 =

tan−1 (
𝑦̅

𝑥̅
) ∙

𝑚̅

2𝜋
                   𝑖𝑓    𝑥̅ > 0,   𝑦̅ ≥ 0

(tan−1 (
𝑦̅

𝑥̅
) + 𝜋) ∙

𝑚̅

2𝜋
       𝑖𝑓    𝑥̅ ≤ 0               

(tan−1 (
𝑦̅

𝑥̅
) + 2𝜋) ∙

𝑚̅

2𝜋
    𝑖𝑓    𝑥̅ > 0,   𝑦̅ < 0

    (5) 

The variability r of the mean date of occurrence around the average date is 

𝑟 = √𝑥̅2 + 𝑦̅2  where  0 ≤ 𝑟 ≤ 1.      (6) 

r = 0  corresponds to events being widely dispersed throughout the year, and r=1 to events 

occurring on the same day of the year. 

2.5. PROBABILITY THEORY 

The following sections are to a large degree an account of the L-moment approach to 

regional frequency analysis outlined in the influential work of Hosking and Wallis (1997), 

beginning with a note on probability theory. 

Environmental data are often regarded as observations of random variables, generally 

denoted by X, and it is very rare that these values are equally likely to be observed (Hosk-

ing and Wallis, 1997). In probability theory, the relative frequency with which the values 

of X occur is described by its probability distribution. The cumulative distribution func-

tion, 

𝐹(𝑥) = Pr[𝑋 ≤ 𝑥]  where  0 ≤ 𝐹(𝑥) ≤ 1,     (7) 

of a probability distribution describes the probability that the random variable, or obser-

vation, is lower than a specific value x. If F(x) is a continuous function, which is often the 

case for environmental variables, it has an inverse function x(F) called the quantile func-

tion of X. x(p) is called the quantile of non-exceedance, given a probability p that X does 

not exceed the value x(p). For example, the discharge of a river might have a probability 

p=1% of exceeding 100 m3/s, which would then be the value of x(0.01). 

In frequency analysis, the object is to estimate the quantiles belonging to the distribution 

of the random variable of interest (Hosking and Wallis, 1997). The quantiles may also be 

expressed in terms of the return period, which is common in environmental and engineer-

ing practice. A quantile of return period T, XT, is an observation, or event magnitude, that 

has the average probability 1/T of being exceeded by any single event. For annual data, 

an event magnitude with a return period of T years is equivalent to an annual non-exceed-

ance probability 

𝐹(𝑋𝑇) = 1 − 1/𝑇,        (8) 

and the magnitude of such an event is given by 

𝑋𝑇 = 𝑥(1 − 1/𝑇).        (9) 
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For engineering purposes, a return period of interest may be the design life of a structure, 

and thus the quantity XT can be referred to as the design event. When flood and precipi-

tation data are analyzed, the design event is called the design flood and design storm, 

respectively. 

2.6. ESTIMATORS 

To estimate the quantiles of the variable of interest, a distribution for the variable must 

first be known (Hosking and Wallis, 1997). It is common to assume that a suitable distri-

bution can be defined apart from a set of unknown parameters. These usually include 

location and shape parameters, which are estimated from the observed data. A common 

measure of performance for the estimator 𝜃 of parameter 𝜃 is the root mean square error 

(RMSE),  

𝑅𝑀𝑆𝐸(𝜃) = {𝐸(𝜃 − 𝜃)2}
1/2

,       (10) 

which has the same units as the parameter. A dimensionless measure, the relative RMSE, 

is obtained by the ratio of RMSE and 𝜃. 

2.7. MOMENTS 

The moments of a probability distribution are used for describing its scale and shape 

(Hosking and Wallis, 1997). The first moment is the mean, the center location of the 

distribution and the expected value of a random variable X, 

𝜇 = 𝐸(𝑋).         (11) 

Higher order moments are given by 

𝜇𝑟 = 𝐸(𝑋 − 𝜇)𝑟  with  𝑟 = 2, 3, …      (12) 

The second moment is the variance which measures the dispersion around the mean value, 

𝜎2 = 𝜇2 = 𝐸(𝑋 − 𝜇)2.        (13) 

The coefficient of variation (CV) measures dispersion as a proportion of the mean, 

𝐶𝑉 = 𝜎/𝜇,         (14) 

and is a useful alternative to the variance. Estimating the shape of a distribution involves 

higher order moments, as for skewness and kurtosis. Skewness, 

𝛾 = 𝜇3/𝜇2
3/2

,         (15) 

contains the third moment and measures whether the distribution is concentrated at the 

left and has a longer right tail (positive skew), or vice versa (negative skew). The forth 

moment is included in kurtosis, 

𝜅 = 𝜇4/𝜇2
2,          (16) 

which is related to the influence of extreme values on the variance, i.e. kurtosis increases 

as more of the variance is due to the presence of outliers (Westfall, 2014). 
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2.8. L-MOMENTS 

Probability weighted moments (PWMs) were developed by Greenwood (1979) as an al-

ternative to ordinary moments when estimating parameters to distributions whose inverse 

form are explicitly defined. However, the PWMs can only indirectly be interpreted as 

measures of scale and shape of a probability distribution. To overcome this, Hosking 

(1990) defined L-moments as linear combinations of the PWMs (the “L” refer to this fact, 

that they are linear combinations). L-moments have a good performance for small sam-

ples and computational simplicity compared to other estimation methods such as maxi-

mum likelihood, making them popular for applications to hydrologic extremes (Katz, 

2002). 

Analogous to ordinary moments, useful L-moments for summarizing data are the L-loca-

tion (λ1), which is the same as the mean of the distribution, and the L-moment ratios L-

CV (τ), L-skewness (τ3) and L-kurtosis (τ4). The L-moment ratios are given by the for-

mula 

𝜏𝑟 = 𝜆𝑟/𝜆2  with  𝑟 = 3, 4, …        (17) 

where λ2 is the scale measure L-scale. The L-moment ratios are therefore dimensionless. 

Sample L-moments are denoted lr, and sample ratios by tr. See Hosking and Wallis 

(1997) for detailed definitions. 

The L-moment ratio diagram is a convenient way of comparing sample L-moment ratios 

with population values of frequency distributions (Hosking and Wallis, 1997). The values 

are plotted on a graph whose axes are L-skewness and L-kurtosis. Two-parameter distri-

butions plot as points, and three-parameter distributions plot as lines, with different points 

on the line equivalent to different values of the shape parameter. For a homogenous region 

(see definition below), it is useful to plot the regional average L-moment ratios – average 

of at-site ratios in a region weighted by record length – to assess which distribution it 

resembles. In this way, the L-moment ratio diagram provides a visual assessment of the 

dispersion of the at-site L-moment ratios and can be used as a graphical tool to guide the 

selection of a suitable parent distribution in a regional frequency analysis. 

2.9. REGIONAL FREQUENCY ANALYSIS 

It is often a problem when estimating quantiles from annual data that record lengths are 

too short compared to the return period of interest (Hosking and Wallis, 1997). Generally, 

a record length at least as long as the return period is needed for reliable estimates, which 

seldom is the case for environmental observations. 

Regional frequency analysis is a way to mitigate the problem of short records (Hosking 

and Wallis, 1997). It works by pooling together data from sites which are deemed similar 

enough, i.e. the at-site frequency distributions are approximately the same. In other 

words, a region is a group of sites whose observations are assumed to be drawn from the 

same distribution. Quantile estimates are then made from the larger dataset of the region, 

ideally with better accuracy than the at-site estimates. 
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The similarity of the at-site distributions is referred to as the homogeneity of the region, 

or heterogeneity if they are too dissimilar (Hosking and Wallis, 1997). A regional analysis 

involves assigning sites to regions, testing if the proposed regions are homogenous and 

finding suitable frequency distributions that fit the regional datasets. 

2.9.1. Index flood method 

One way to conduct a regional analysis is by the index flood method of Dalrymple (1960). 

As the name suggests, the method was developed for flood frequencies, but it can be used 

for any kind of data. It consists of two steps, where the first is to develop a dimensionless 

frequency curve, referred to as the regional growth curve in later works (e.g. by Schaefer, 

1990; Hosking and Wallis, 1997; Di Baldassarre et al., 2006). The growth curve repre-

sents the ratio of an event magnitude of any frequency, i.e. the quantiles, to an index 

flood. The index flood is defined for each site in a region and commonly taken to be the 

at-site mean (Dalrymple, 1960). When applied to precipitation data, this is instead called 

the index storm.  

The second step involves relating the index flood to some physical characteristic to enable 

the prediction of the index flood, and thus also the quantiles, at any point within a region. 

This makes it possible to assign any site with that characteristic to a frequency curve. 

Because of this, regionalization is a vital tool in the field of flood prediction at ungauged 

sites (Blöschl et al., 2013). 

In the approach to the index flood method of Hosking and Wallis (1997), the index flood 

at site i is estimated by the sample mean of the data. The parameters of the at-site distri-

butions are found by estimating L-moments from the sample data. The at-site estimates 

are combined in the regional average to give the parameters of the regional growth curve. 

If 𝑄̂i(F) is the estimated quantile function of the frequency distribution for site i belonging 

to a homogenous region, then quantile estimates are calculated as 

𝑄𝑖̂(𝐹) = 𝜇𝑖̂𝑞̂(𝐹),        (18) 

where 𝜇̂i and 𝑞̂(F) are the estimated index flood and regional growth curve. 

Given that the regional growth curve is correctly specified and that frequency distribu-

tions at different sites indeed are identical apart from a scale factor, the procedure of 

Hosking and Wallis (1997) assumes that observations are identically distributed, not se-

rially dependent and that there is no cross-correlation between sites. Although these as-

sumptions may not be exactly satisfied in practice, Hosking and Wallis argue the proce-

dure to be appropriately robust to departures from the assumptions. 

2.9.2. Identification of homogenous regions 

A crucial step in regionalization is the identification of homogenous regions. There are 

numerous ways to delineate sites into regions and several involve subjective judgement. 

Hosking and Wallis (1997) argue that formation of regions should not be based on at-site 

statistics, but rather on site characteristics. These are, in principle, quantities that can be 
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known about a site without measurements having been carried out, such as location, ele-

vation and other physical properties. Mean annual precipitation may also be considered 

as such a characteristic. 

At-site statistics should instead be used in testing of homogeneity of a proposed set of 

regions (Hosking and Wallis, 1997). Otherwise, if for example L-CV is used for grouping, 

there would be a tendency to group together sites with high outliers, even though these 

outliers might be due to random fluctuations that happened to affect one site but not its 

neighbors. 

2.9.3. Discordancy 

The discordancy measure of Hosking and Wallis (1997) is used to identify sites which are 

inconsistent with a group of sites as a whole. This is measured by the at-site L-moment 

ratios and summarized in the discordancy measure D. The critical value of D, above which 

a site is considered discordant, is 3 for regions with 15 or more sites (D increases from 1.33 

to 3 for 5 to 15 or more sites in a region). A site flagged as discordant should be scrutinized 

for errors in the data or put under consideration for removal from the region. 

2.9.4. Homogeneity test 

All sites in a homogenous region have equal population L-moment ratios, but due to sam-

pling variability the at-site ratios will differ. The question is if the dispersion of the ob-

served L-moment ratios is larger than what would be expected. The homogeneity test 

proposed by Hosking and Wallis (1997) compares the dispersion of at-site L-CV to the 

statistics of a homogenous region, obtained from Monte Carlo simulations. In the test, the 

flexible four-parameter Kappa distribution is fitted to the regional average L-moment ra-

tios calculated from the sites (see appendix Eq. A26–A28). A large number of realizations 

are simulated with this distribution, with the same number of sites and record lengths as 

the samples. The simulation results are used to calculate the heterogeneity measure 

𝐻 =
(𝑉−𝜇𝑉)

𝜎𝑉
,          (19) 

where V is the weighted standard deviation of at-site sample L-CV, and µV and σV are the 

mean and standard deviation of simulated V. The region may be considered acceptably 

homogenous if H≤1, possibly heterogeneous for 1≤H≤2, and definitely heterogeneous if 

H≥2. 

It is also possible to use a heterogeneity measure based on L-skewness and L-kurtosis. 

Hosking and Wallis (1997) refer to this measure as V3 and consider it appropriate for 

procedures based on hierarchical regions. Although, compared to the measure based on 

L-CV, they find that this measure lacks power to discriminate between homogenous and 

heterogeneous regions.  

In this study, the H-statistic of the homogeneity test corresponding to V3 is termed H3 and 

the H-statistic based solely on L-CV is referred to as H1. Unless specified otherwise, ho-

mogeneity refers to H1. 
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2.9.5. Choice of regional frequency distribution 

Hosking and Wallis (1997) suggest considering many families of distributions as candi-

dates for a regional dataset. The set of distributions suggested by Hosking (2015) is able 

to adapt to a wide range of properties of the data, and comprises the generalized logistic, 

generalized extreme value, generalized Pareto, generalized normal, Pearson type III and 

the Gumbel distribution (see appendix for formulas). 

Given a set of candidate distributions, a goodness-of-fit test may be used to asses which 

distribution gives the best fit to the data. The test for regional distributions of Hosking 

and Wallis (1997) is based on the notion that regional average L-moment ratios summa-

rize the L-statistics of homogenous region. Given homogeneity, the scatter of at-site val-

ues in the L-moment ratio diagram should represent no more than sampling variability. 

The location and scale parameters of the distributions are estimated by the regional aver-

age mean (L-location) and L-CV. The test compares the differences between L-skewness 

and L-kurtosis of the fitted distributions, and the corresponding regional averages.  

To assess the significance of the differences, simulations are used to calculate a sampling 

variability for the regional averages. The simulations are in principle the same as for the 

homogeneity test, and those computations can be used again here to calculate the standard 

deviation and bias of the regional averages. The goodness-of-fit measure Z reflects a fit 

acceptable at the 10% significance level for |Z| ≤1.64. This assumes that Z has a standard 

normal distribution, which is only accurate if the region is perfectly homogenous and if 

there is no serial correlation or cross-correlation present in the data. Should several dis-

tributions be found to be acceptable, their growth curves can be compared. If these are 

approximately equal, then any of the distributions is adequate.  

2.9.6. Estimation of a regional frequency distribution and its accuracy 

In the L-moment procedure of Hosking and Wallis (1997), a regional frequency distribu-

tion is fitted by equating the L-moment ratios of a suitable distribution to the regional 

averages calculated from the samples. For three-parameter distributions, sample L-mo-

ment ratios t, t3 and t4 are computed and used to estimate the regional quantile function 

𝑞̂(𝐹). Since the quantile estimates for each site is scaled by the index flood, the regional 

average mean, l1
R, is set to 1. Estimate of quantile with non-exceedance probability F at 

site i is calculated as 

𝑄𝑖̂(𝐹) = 𝑙1
(𝑖)

𝑞̂(𝐹).        (20) 

The accuracy of the quantile estimates can be assessed in Monte Carlo simulations of a 

synthetic region that matches the region used for the estimates in terms of heterogeneity 

and intersite dependence. Variation of the at-site L-CV in the synthetic region is chosen 

to match the observed H1-value. A correlation matrix can be used to describe the observed 

correlation pattern of the data, but if no specific pattern is discernible between the sites, 

they can be assumed to be equicorrelated. The average cross-correlation between all sites 

is then used. A large number of realizations of the synthetic region are made with the 
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same number of sites, record lengths and regional distribution as the region used for esti-

mates. A relative RMSE of the quantiles may be computed from the simulations. An in-

terval around the estimated growth curve can also be calculated, within which a given 

ratio of simulated values fall. This is referred to as error bounds in Hosking and Wallis 

(1997). 

3. DATA AND METHODS 

3.1. DATABASE 

The database used in this study was created involving the work of researchers at the Uni-

versity of Trento. The software DB Browser for SQLite (v. 3.9.1) was used to extract data 

from the database. 

The database contains hydrological and meteorological time series data as well as spatial 

information of the Adige basin. Precipitation and discharge data were available in daily, 

hourly and sub-hourly (5 min, 10 min and 30 min) time series. However, the majority of 

hourly and sub-hourly series were initiated after the year 2000 and no sub-daily series 

extended further back than 1977. Availability of daily data were better, with records going 

as far back as the 1920s. The most recent records end in early 2015, and roughly half of 

all records end before 2010. There were also historic records of monthly series which 

were not considered in this study. 

Based on the availability of data records (summarized in Table 1) it was decided that a 

suitable study period would be the 40-year period 1975-2014. It was also decided that the 

focus should be on daily data and that sub-daily records could be included after aggrega-

tion into daily series. 

Table 1. Number of available records in database and summary of record lengths. 

Variable Available records Mean (yrs) Min (yrs) Max (yrs) Std. (yrs) 

Precipitation 643 29 0.02 94 29 

Discharge 128 18 0.01 89 19 

 

3.2. PROCEDURE FOR DEVELOPING ANNUAL MAXIMUM SERIES 

The extracted time series were tested to assess if they were suitable for developing 

AMAX series. Primarily, the years used in the AMAX series should not have too many 

missing values, otherwise it is plausible that the maximum value that year was not rec-

orded. The main idea in the implemented selection procedure was to use the information 

in the seasonality of annual maxima, together with a threshold for missing values. The 

steps are explained in detail below and were performed in MATLAB (v. 2017b). Selected 

records are summarized in Table 2.  
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1. First, every time series (daily and sub-daily) for precipitation and discharge sites 

with more than 15 years between the reported start and end dates were extracted 

as csv-files from the database. 

2. For each time series, the years in the period 1975-2014 with less than 5% missing 

values were selected. This threshold was included to get a reliable first estimate 

of the seasonality indices. 

3. Sub-daily series were then aggregated to daily series. For precipitation series, this 

meant finding the sum of values recorded over 24 hours. However, there seemed 

to be some inconsistencies in the database regarding which 24 h-period was de-

fined as a day. For several sites, both daily and sub-daily series were available, 

which allowed for comparisons between the aggregated daily series and the data-

base counterparts. For 10 min-data, values were summed between 9 a.m. the first 

day to 9 a.m. the following day (the date of the second day was assigned to the 

value). Although there were examples of 5 min-series where summing between 

midnight to midnight or 10 a.m. to 10 a.m. yielded values closer to the database 

daily series, 9 a.m. to 9 a.m. was more common and thus used for all series. For 

60 min data, sums between 10 a.m. to 10 a.m. gave values most similar to the 

database daily series. In the case of discharge data, the mean value was calculated 

for each day, defined as midnight to midnight. 

4. To construct AMAX series, the largest daily event was selected for each hydro-

logical year among the selected calendar years. The hydrological year was defined 

as October 1 to September 30 the following calendar year. The resulting series 

were checked so that no two maxima occurred within one week, to ensure that 

they were not generated by the same storm event, i.e. to minimize serial correla-

tion. 

5. The seasonality of each AMAX series was then analyzed to find the mean date of 

occurrence, Dmean, and its variability, r. 

6. The information from the seasonality analysis was used for a more rigorous se-

lection criterion. The extracted time series were tested one more time. For each 

series, a window was defined as +/-10 days/r around Dmean, i.e. the size of the 

window was inversely proportional to the variability of the mean date of occur-

rence (0 ≤ 𝑟 ≤ 1). The average window size was +/-26 days for precipitation and 

+/-20 days for discharge. Years with less than 0.05% missing values within the 

window were considered to have complete records. Time series with at least 20 

complete years were selected. 

7. Steps 3–5 were repeated for time series selected in step 6 to construct the AMAX 

series used in further analysis. In the case where daily and aggregated sub-daily 

series both met the criteria in step 6, the daily series were chosen since these 

tended to have longer records and this minimized the uncertainty introduced by 

the aggregation. Before generating the final AMAX series, it was checked in GIS 

software that only sites located within the Adige basin were used. 



13 

 

Table 2. Number of selected records and summary of their record lengths. 

Variable Selected records Mean (yrs) Min (yrs) Max (yrs) Std. (yrs) 

Precipitation 84 32 21 39 5.5 

Discharge 17 31 20 39 5.7 

 

3.3. CATCHMENT DELINEATION 

Discharge time series were available in units of m3/s and converted to mm/d in the AMAX 

series in accordance with precipitation data. The specific discharge, i.e. the value in m3/s 

divided by sub-catchment area in m2, was calculated for each discharge site and then 

transformed from m/s to mm/d. This scaling affects L-location but not L-CV and higher 

order L-moment ratios. 

The Adige basin at the city of Trento and its sub-catchments were delineated using the 

digital elevation model Global Multi-resolution Terrain Elevation Data 2010 

(GMTED2010) from the U.S. Geological Survey and the National Geospatial-Intelli-

gence Agency (U.S. Geological Survey, 2015). The spatial resolution used was 7.5 arc-

seconds. Delineation was performed in QGIS (v. 2.18.7) with the SAGA (v. 2.3.2) algo-

rithms Fill sinks, Strahler order, Channel network and drainage basins and Upslope area. 

3.4. SCREENING OF DATA 

Time series in the database were labelled with a quality assessment. Each value in the 

time series was associated with one of 53 different quality codes. These codes were 

grouped into flag equal to 0 or 1. Data with flag=0 were described as missing, incomplete 

or suspect, whereas data with flag=1 contained descriptions such as good or complete, 

but also unverified or interpolated from hydrological records of the Italian Hydrological 

Service. Test results for L-moments were first generated including all available data. An 

examination of suspicious outliers showed that these all belonged to data with flag=0. 

All data with flag=1 was included in this study. While the inclusion of unverified data 

introduced uncertainty, the trade-off for longer records was deemed necessary. As an ex-

ample, precipitation site 90269 was found to have 34 complete years but would lose 16 

years of available data in the study period if unverified data were excluded. Overall, the 

assessment is that unverified data represents a minority of analyzed data. 

The lag-one serial correlation coefficient was computed for the AMAX series.  Precipi-

tation sites had an average value of 0.024, with a standard deviation of 0.17. For dis-

charge, the values were -0.09 and 0.14, respectively. 

3.5. STUDY AREA 

The Adige river is the second longest river in Italy (Encyclopædia Britannica, 1998). It rises 

from mountain lakes below the Resia pass in the north-eastern Italian Alps and flows south 

and east to Bolzano where is joins with the Isarco River. Past Bolzano it flows south through 

the Lagarina Valley passing Trento, the capital of the Trentino-Alto Adige region. 
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The drainage area of the Adige at Trento is 9,800 km2. It is a mountainous region, with the 

highest peaks predominantly in the western part and at the northern edge along the Austrian 

border (Figure 1). The low-lying river valley is mainly oriented in the north-south direction. 

Mean annual precipitation varies between 500 and 1,260 mm with an average of 830 mm. 

The main direction of storms is from the south and west during autumn, and the catchment 

response time is approximately 20 h (Manfreda and Fiorentino, 2008). This response time 

makes the analysis of daily data suitable for detecting the largest flood peaks. 

The river is modified by human action, with dikes built on both its sides in its path through 

the valley (Alkema et al., 2003), and the main river and its tributaries being exploited for 

hydroelectric power generation. Dams in use today were built before the 1960s (Zolezzi 

et al., 2009) and the locations of the 25 reservoirs are marked in Figure 1. 

 

 

Figure 1. Map of the Adige basin down to Trento showing elevation. Locations of selected pre-

cipitation (circles) and discharge (squares) sites are plotted, together with reservoirs (triangles) 

in the river network. Coordinate system WGS 84/UTM zone 32N, EPSG: 32632. Coordinates in 

decimals. 
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3.6. L-MOMENT AND REGIONAL ANALYSIS METHODOLOGY 

The development and analysis of L-moments and the regional frequency analysis were 

performed in R (v. 3.4.2), with the packages lmom (Hosking, 2015) and lmomRFA (Hosk-

ing, 2017). 

3.7. TREND ANALYSIS AND SEASONALITY ANALYSIS METHODOLOGY 

Trend analysis of AMAX series were performed in R with the packages data.table 

(Dowle et al, 2017), and modifiedmk (Patakamuri, 2017). 

A sensitivity analysis was performed to examine the influence of gaps (i.e. missing years) 

in the AMAX series on the detection of significant trends.  

1. First, AMAX series with no missing years were selected and the sensitivity test 

was performed on this set of series.  

2. A percentage of the AMAX values was randomly removed from each series, and 

the MK trend test was then performed on these series with artificial gaps. 

3. The test was repeated with 5%, 10%, 15%, 20% and 25% of AMAX values re-

moved. For each percentage of artificial gaps, the number of significant trends 

was stored. 

4. Since the algorithm involved the generation of random numbers, it was imple-

mented with a Monte Carlo procedure. For each percentage of artificial gaps, re-

sults were averaged over 1000 outcomes of the algorithm. 

5. Finally, the difference between the results with artificial gaps and the original se-

ries, i.e. with no artificial gaps, was compared to assess the reliability of trend 

results for series which contained gaps. 

Calculations of β-values (Eq. 1) for the trend analysis of mean date of occurrence, as well 

as the seasonality analysis, were implemented in MATLAB (v. 2017b). 

4. RESULTS 

Results are summarized in the following sections. See Tables A1 and A2 in appendix for 

detailed results for each site. 

4.1. TREND ANALYSIS OF ANNUAL MAXIMUM SERIES 

The MK trend analyses of the AMAX series performed at 10%, 5% and 1% significance 

levels displayed a pattern where a minority of sites exhibited predominantly negative 

trends (Table 3). The percentages of AMAX series with significant negative trends were 

larger than the significance levels, with the exception of precipitation series at the 5% 

level. There, 4 out of 84 series (4.8%) showed significant negative trends. Record lengths 

of AMAX series with significant trends at the 1% level were all above 30 years. 

All AMAX series were included in the data summary in Figure 2, but for the estimation 

of distributions, series with significant trends at the 5% level were excluded. 
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Table 3. Trend analysis of annual maximum series for selected significance levels, with number 

of significant positive (+) and negative (-) trends for each variable and the number of samples (n). 

Variable Significance level 

 10% 5% 1% 

Precipitation (n=84)    

+ 2 2 0 

- 11 4 3 

Discharge (n=17)    

+ 0 0 0 

- 5 3 2 

 

4.1.1. Sensitivity analysis 

36 out of the 84 precipitation AMAX series, and 10 out of 17 discharge series, were found 

to have no missing years and where thus used in the sensitivity analysis. The number of 

significant trends decreased when artificial gaps were introduced, and the number gener-

ally decreased more for larger gaps (Table 4 and 5).  

Furthermore, the p-values for each site were averaged over the outcomes of the Monte 

Carlo simulations performed for each percentage of artificial gaps. This analysis showed 

that no site developed significant trends with increasing gaps, but rather the opposite: the 

average p-values increased with increasing artificial gaps for the sites that had significant 

trends when no artificial gaps had been introduced, leading to sites losing significance as 

the artificial gaps increased (Table A3 and A4 in appendix). 

Table 4.  Sensitivity analysis of precipitation trend results, with number of significant positive 

(+) and negative (-) trends with different percentages of AMAX values randomly removed 

(artificial gaps). Analysis performed on a subsample of 36 series which had no gaps in record. 

Note that the significant numbers of trends are 3.6, 1.8 and 0.36 for the 10%, 5% and 1% 

significance levels respectively. Results are based on 1000 realizations of the algorithm. Trend 

results for the 36 series with no years removed (0% artificial gaps) are included for comparison. 

Artificial gaps Trend Significance level 

  10% 5% 1% 

0% + 1 1 0 

 - 4 2 1 

5% + 1.2 1.0 0 

 - 3.4 1.6 0.5 

10% + 1.5 0.9 0 

 - 3.3 1.5 0.3 

15% + 1.5 0.8 0 

 - 3.1 1.4 0.3 

20% + 1.6 0.8 0 

 - 3 1.3 0.2 

25% + 1.6 0.8 0 

 - 2.9 1.2 0.1 
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Table 5. Sensitivity analysis of discharge trend results, with number of significant positive (+) 

and negative (-) trends with different percentages of AMAX values randomly removed 

(artificial gaps). Analysis performed on a subsample of 10 series which had no gaps in record. 

Note that the significant numbers of trends are 1, 0.5 and 0.1 for the 10%, 5% and 1% 

significance levels respectively. Results are based on 1000 realizations of the algorithm. Trend 

results for the 10 series with no years removed (0% artificial gaps) are included for comparison. 

Artificial gaps Trend Significance level 

  10% 5% 1% 

0% + 0 0 0 

 - 3 2 1 

5% + 0 0 0 

 - 2.4 1.4 0.3 

10% + 0 0 0 

 - 2.2 1.3 0.3 

15% + 0 0 0 

 - 2.0 1.1 0.2 

20% + 0 0 0 

 - 1.7 0.9 0.2 

25% + 0 0 0 

 - 1.5 0.8 0.1 

 

4.2. L-MOMENTS SUMMARY 

The spatial distributions of L-location, L-CV and L-skewness are summarized in Figure 

2. Both color and size of symbols reflect the magnitude of values, where the smallest and 

largest symbols belong to the sites with the lowest and highest values, respectively. The 

precipitation L-moment values were typically higher in the central part of the basin. For 

discharge, the L-location and L-skewness were mainly higher for sites belonging to the 

smaller sub-catchments in the northern part of the basin. Beyond this, other geographic 

patterns are difficult to discern.  

For discharge, the L-moment ratio diagram (Figure 3) revealed that the regional average 

had the best agreement with the generalized normal (GNO) distribution. In the case of 

precipitation, the regional average was closest the line of Pearson type III (PE3), but also 

near the generalized normal, generalized extreme value (GEV) and Gumbel (G) distribu-

tions (Figure 4). In both cases, the scatter of sample points covers the set of distributions. 
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Figure 2. At-site values of L-location (1st row), L-CV (2nd row) and L-skewness (3rd row) for 

precipitation (left column) and discharge (right column) sites. Symbol size increase with 

increasing values. Values are color-categorised in five levels according to magnitude (see 

legends). Units of L-location are mm/d. 
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Figure 3. L-moment ratio diagram for discharge comparing sample L-kurtosis and L-skewness 

(hollow circles) and the regional average (filled circle) to values of the frequency distributions 

generalized logistic (GLO), generalized extreme value (GEV), generalized Pareto (GPA), gener-

alized normal (GNO), Pearson type III (PE3) and Gumbel (G). 

 

Figure 4. L-moment ratio diagram for precipitation. See description for Figure 3. 
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4.3. DISCORDANCY TEST 

Two precipitation series were found to be discordant, with D larger than the critical value 

3.0, which warranted these series to be checked for potential errors. The first series, be-

longing to site 90104, had unverified values for the years 1975-1980, and subsequently 

verified data quality from 1981 to 2013. The annual maxima of 1975-1980 were in good 

agreement with the rest of the period. The reason for discordancy was the high L-CV of 

this series, likely caused by the extreme value in 1999 of 190 mm/d, which was the highest 

measured at any site. The second series, from site 90014, had the smallest maximum value 

of all series, and all values in the time series were verified apart from a short interval in 

March 2013. Based on this, neither series was excluded. No discharge series was found 

to be discordant. 

4.4. REGIONAL HOMOGENEITY 

The heterogeneity measure of Hosking and Wallis (1997) was used to assess whether the 

sites in the study area could be treated as a single homogenous region. The region was 

considered acceptably homogenous for H≤1, possibly heterogeneous for 1≤H≤2 and def-

initely heterogeneous for H≥2. With 10 000 realizations of the algorithm, the values of 

H1 were found to be 0.27 for precipitation and 1.50 for discharge, with similar magnitudes 

for H3. (Table 6). In other words, the whole basin was homogenous with respect to pre-

cipitation but possibly not for discharge. Therefore, only precipitation data were consid-

ered in the regional frequency analysis. 

Table 6. Heterogeneity test statistics. H1 is based on L-CV and H3 on L-skewness and L-

kurtosis. 

Variable H1 H3 

Precipitation 0.27 -0.28 

Discharge 1.50 -1.86 

 

4.5. REGIONAL FREQUENCY ANALYSIS 

A more formal way of identifying suitable frequency distributions than inspection of L-

moment ratio diagrams is to use the goodness-of-fit test described in section 2.9.5. Both 

PE3 and the GNO distributions had acceptable fits (Table 7). Growth curves for the dis-

tributions were compared and found to be approximately equal. Both distributions may 

be adequate, but PE3 was selected for quantile estimates on account of the lower Z-value. 

The Gumbel distribution was not tested, as it was not included in the R-package. But 

judging from the relative distances to the regional average in Figure 4, Gumbel should 

have a Z-value very similar to GEV. 

 

 



21 

 

Table 7. Test statistics for goodness-of-fit test. The fit is considered acceptable if |Z| is less than 

1.64. 

Distribution Z 

GLO 7.30 

GEV 2.03 

GNO 1.32 

PE3 -0.50 

GPA -9.72 

 

The regional frequency distribution was fitted by the method of L-moments. The popula-

tion L-moments of the region were equated to the regional average L-moment ratios from 

the sample data (Table 8).  

Table 8. Regional average L-location (l1), L-CV (t), L-skewness (t3) and L-kurtosis (t4). 

l1
R t R t3

R t4
R 

1 0.166 0.172 0.136 

 

The PE3 distribution was parametrized by the conventional moments mean μ, standard 

deviation σ, and skewness γ. These parameters were estimated from the regional L-mo-

ments (Table 9). Expressions for the L-moments in terms of parameters of PE3 and re-

maining distributions may be found in Hosking and Wallis (1997). 

Table 9. Fitted parameters for regional Pearson type III distribution. 

Distribution μ σ γ 

PE3 1 0.305 1.045 

 

Monte Carlo simulations were used to assess the accuracy of the quantile estimates from 

the fitted regional distribution, accounting for heterogeneity and inter-site dependency.  

The variation of the at-site L-CV in the simulated region was set to the L-CV range of the 

samples, divided by 4.1 in order to match the observed H1=0.27. Sites were assumed to 

be equicorrelated. The average cross-correlation was calculated as 0.360 and included in 

the simulations.  

The estimated regional growth curve of the region with 90% error bounds is plotted in 

Figure 5 and summarized for selected values of non-exceedance probabilities F in Table 

10. The index storm is scaled by the growth curve to give at-site quantile estimates. An 

event with a return period of 100-years (F=0.99) was estimated to be up to twice the 

magnitude of the index storm. 
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Figure 5. Regional growth curve for precipitation with 90% error bounds (dashed lines) for re-

turn periods up to 100-years. 

Table 10. Regional quantile estimates q̂(F) with regional average RMSE and 90% error bounds 

(lower and upper) for selected non-exceedence probabilities F. Results based on 10 000 

realizations. 

F q̂(F) RMSE Lower bound (0.05) Upper bound (0.95) 

0.01 0.53 0.03 0.48 0.59 

0.50 0.95 0.01 0.94 0.96 

0.80 1.23 0.01 1.21 1.25 

0.90 1.41 0.03 1.36 1.46 

0.98 1.78 0.06 1.68 1.89 

0.99 1.93 0.08 1.81 2.07 

 

Event magnitudes with return periods of up to 100 years were estimated for annual max-

imum precipitation at site 90462 located just outside Trento, using Eq. 20 and the index 

storm of 66.7 mm/d (Table 11). The quantile estimate for the site had an upper bound of 

147.6 mm/d for the 100-year storm. The time series showed that a similar amount, 134 

mm, fell over January 31– February 1 in 1986. This did not coincide with a notable in-

crease in the series of the nearby discharge site 90415 in Trento. 
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Table 11. Estimated annual maximum precipitation Q̂(F) at site 90462 on the outskirts of 

Trento for return periods of up to 100 years. Results represent regional quantile estimates and 

error metrics in Table 8 scaled by the index storm. 

Return period  

(yrs) 

F Q̂(F)  

(mm/d) 

RMSE  

(mm/d) 

Lower bound (0.05) 

(mm/d) 

Upper bound (0.95) 

(mm/d) 

1 0.01 35.0 2.9 30.7 40.4 

2 0.50 63.2 4.2 56.6 70.4 

5 0.80 82.0 5.6 73.4 91.9 

10 0.90 94.0 6.6 83.9 105.8 

50 0.98 118.9 9.1 105.2 135.4 

100 0.99 128.8 10.2 113.7 147.6 

 

4.6. L-MOMENTS AND MEAN ANNUAL PRECIPITATION 

A visual inspection of the relationship between sample L-CV and MAP (Figures 6), as 

well as L-skewness and MAP (Figure 7), gives some indication of a decrease of the L-

moments with increasing MAP. When the relationship was formalized by fitting a linear 

model to the data, it was in both cases very weak (adjusted R2=3.1∙10-3 for L-CV and 

2.4∙10-2 for L-skewness) and only significant at a 10% level for L-skewness (p-

value=0.27 for L-CV and 0.09 for L-skewness). The slope was in both cases negative. 

 

 

Figure 6. Sample L-CV of precipitation plotted against mean annual precipitation. Line repre-

sents linear regression model (R2=3.1∙10-3, p-value=0.27). 
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Figure 7. Sample L-skewness of precipitation plotted against mean annual precipitation. Line 

represents linear regression model (R2=2.4∙10-2, p-value=0.09). 

4.7. SEASONALITY ANALYSIS 

The findings of the seasonality analysis are summarized for precipitation in Figures 8 and 

for discharge in Figure 9, where the color and direction of arrows represent the mean 

timing Dmean of annual maxima at each site (a Dmean of January 1 would point north and 

have an angular value of 0). The length of the arrows is proportional to the variability r, 

where longer arrows mean lower variability. 

The analysis showed that the precipitation extremes were characterized mainly by autumn 

storms, with Dmean in August and September being most common. The seasonality was 

however rather weak, with a mean value of 0.45 and standard deviation of 0.13 for r and 

a range of July-November for Dmean. Looking at the spatial distribution, there seemed to 

be a pattern of earlier maxima occurring in the eastern part of the basin, and later maxima 

being more common in the western part. 

The seasonality was stronger for floods, where r had a mean value of 0.70 and a standard 

deviation of 0.16. Dmean occurred in summer, predominantly in July, indicating that the 

timing of discharge extremes typically preceded precipitation extremes. 
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Figure 8. Seasonality for precipitation extremes. Arrow color and direction indicate mean tim-

ing of extremes. Arrow length is proportional to variability of timing. 

 

Figure 9. Seasonality for discharge extremes. See description of Figure 8. 
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A more detailed view of the seasonality may be obtained by the monthly distributions of 

AMAX occurrences. Figure 10 shows that both precipitation and discharge maxima were 

characterized by a single annual peak, roughly corresponding to the most common values 

of Dmean. The distribution peak was more pronounced for discharge, which reflected the 

larger values of r. The distribution also revealed that AMAX values of discharge started 

in May, were most common during June and July, and occurred to a lesser extent through-

out autumn. Only a few values were recorded in the period December–April. For precip-

itation, AMAX values occurred during all parts of the year, but were most common during 

autumn. 

Figure 10. Number of AMAX occurrences in each month for precipitation (left) and discharge 

(right). 

4.7.1. Trends in timing of maxima 

An estimate of the Theil-Sen slope was performed on the dates of annual maxima of each 

individual series. The trend estimators β for all series are summarized in boxplots in Fig-

ure 11. Positive β-values represent a trend toward later dates whereas negative values 

indicate a shift to earlier dates. 

The result suggests a small shift toward later floods. The median β-value of +2.2 

days/decade for discharge translates to less than 10 days over the whole 40-year period. 

For precipitation, the values are quite evenly spread around the median of +0.6 days/dec-

ade and give no clear indication of a shift in the timing of maxima. However, the varia-

bility of precipitation β-values was greater than for discharge. 
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Figure 11. Boxplot summarizing the β-values of Theil-Sen slopes for occurrence dates of 

annual maxima. Unit of β is days per decade. 

5. DISCUSSION 

5.1. TREND ANALYSIS OF ANNUAL MAXIMUM SERIES 

Overall, the percentages of AMAX series with significant trends were consistently larger 

than the significance levels, i.e. larger than we expect to be explained by randomness. 

While the percentage of precipitation AMAX series was just under the 5% level, the con-

clusion was still that the null hypothesis of no change could be rejected. A weak but sig-

nificant signal of decreasing extremes was thus observed in the study period. 

No information has been found indicating that any reservoirs were constructed during the 

study period, so this should not have influenced the trend analysis of discharge series. 

The number of analyzed discharge AMAX series was however low and a larger sample 

would be necessary to draw more confident conclusions about the basin as a whole.  

Regarding precipitation trends, a study by Crisci et al. (2002) of the Tuscany region in 

Italy observed that significant trends in 1970–1994 were predominantly positive: 13 se-

ries of AMAX daily precipitation were found to be positive at a 5% significance level, 

and 1 to be negative, out of a sample size of 81. 

On the global scale, studies of long-term observational records of precipitation show a 

tendency towards an increase in extremes, although there are regional differences, and 

compared to other climatic indices the precipitation indices show less large-scale signifi-

cance. (Alexander et al., 2006). Analyzing a global dataset of daily precipitation extremes 

from 8326 sites with records spanning 1900-2009, Westra et al. (2013) found that two 

thirds of the observed significant trends were positive and one third were negative. How-

ever, only positive trends were statistically significantly different from the null hypothesis 

of no trend. 
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Since the results of a trend analysis depend on the observational window it would be 

interesting to investigate a longer study period. It would also be interesting to compare 

results with other mountainous regions. A model study of orographic precipitation ex-

tremes has suggested that mountainous regions respond differently to climate change and 

might experience less of an increase in precipitation extremes than is expected elsewhere 

(Siler and Roe, 2014). 

5.1.1. Sensitivity analysis 

Results discussed in the above section also hold for the subsamples with complete years 

of record, i.e. percentage of sites with significant trends were larger than the significance 

levels also for the 36 precipitation sites and 10 discharge sites (see results for 0% artificial 

gaps in Table 4 and 5). The question was then if the sensitivity analysis supported the 

inclusion of the remaining sites which contained gaps. 

Fewer trends were detected when more data was removed from the subset of AMAX 

series with only consecutive annual values. Also considering that the average p-values of 

individual sites showed that increasing gaps only lead to loss of trends, these results 

seemed to indicate that trends were harder to detect when data were missing. This could 

mean that the number of significant trends for the series containing gaps have, if anything, 

been underestimated. 

The presence of gaps in the AMAX series means there is information missing, and trend 

results for such sites are thus uncertain. However, the sensitivity analysis performed here 

did lend support to the findings of the trend analysis, and the conclusion was that all 

available series could be included. 

5.2. L-MOMENTS SUMMARY 

The dominant storm direction from the south to the northeast during autumn roughly cor-

responded with the spatial distribution of precipitation L-moments in Figure 2, which is 

in line with the results from the seasonality analysis of rainfall maxima being most com-

mon during this part of the year. 

The specific discharge maxima tended to be higher in the smaller subcatchments of the 

basin. Flood peaks scaled by catchment area have been shown to decrease with increased 

catchment area (Eaton et al., 2002), as it is less likely for larger catchments that rainstorms 

cover the whole area and that they will be fully saturated (Viglione et al., 2010). Although, 

since only daily data have been analyzed, many of the observed discharge peaks may have 

been induced by long-rain events which tend to be uniformly distributed over large areas.  

It was beyond the scope of this study to quantify relationships between extremes and 

physical processes, but of course, spatial differences in the distributional properties may 

be explained by site characteristics such as land use, soil permeability, mean catchment 

elevation etc. The exception is mean annual precipitation, which is discussed further be-

low. 
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5.3. REGIONAL HOMOGENEITY 

The discharge data were found to be possibly heterogeneous. Then, the regional average 

in the L-moment ratio diagram is likely not representative of the data since the samples 

may belong to different distributions. However, even with some degree of heterogeneity 

it could still be the case that quantile estimates from a regional analysis are more accurate 

than at-site estimates (Hosking and Wallis, 1997). Such a comparison has not been per-

formed here. 

It should be noted that an examination of site characteristics might reveal that there is no 

apparent physical reason to subdivide the discharge sites into smaller regions. If hetero-

geneity in this case is caused by a few outlying sites, Hosking and Wallis (1997) recom-

mend that the physical argument rather than the statistical should be emphasized, and that 

the homogeneity of the region may be masked by sampling variability of the data. In other 

words, homogeneity cannot be entirely written off without such an examination.  

Results are also indeterminate for discharge homogeneity measured by shape parameters, 

with H3 in the possibly heterogeneous range. This casts doubt about the adequacy of the 

larger Triveneto region as a homogenous macro-region in the VA.PI. procedure. Nor does 

the assumption of Manfreda and Fiorentino (2008), that discharge in the Adige basin is 

homogenous with respect to L-CV, find much support in the results. Rather, they are in 

line with Persiano et al. (2016), who find the Triveneto region to be heterogeneous. Of 

course, inferences from the Adige basin to the wider Triveneto region are difficult to 

make, but the share of sites located in the Adige basin used by Persiano et al. – roughly 

half – was regarded large enough to draw these parallels. 

Precipitation maxima were found to be homogenous. Since daily durations have been 

analyzed, the maxima may be related mainly to large scale storms compared to the size 

of the basin, as mentioned above. Considering this, it is perhaps expected of the precipi-

tation maxima to show this degree of homogeneity. 

Castellarin et al. (2008) examined effect of cross-correlation on the homogeneity test of 

Hosking and Wallis. With Monte Carlosimulations of 30 sites with up to 50 years of 

record, their results for a cross-correlated region indicated that observed H-values in the 

0-1 range correspond to H-values in the 1-2 range for an uncorrelated region. They con-

sidered an equicorrelated region with cross-correlation equal to 0.4. Since average cross-

correlation for precipitation maxima in this study was found to be 0.36, it is possible that 

the region was falsely identified as homogenous. 

5.4. REGIONAL FREQUENCY ANALYSIS 

The Pearson type III and generalized normal distributions were found to be consistent 

with the data for precipitation extremes. However, since a degree of serial correlation and 

cross-correlation is present in the data, the estimate of Z may be unreliable. This might 

have resulted in too large Z-values (Hosking and Wallis, 1997), indicating that at least the 

generalized extreme value (GEV) distribution with Z=2.03, and therefore also the Gumbel 

distribution, potentially had acceptable fits as well. 
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In the literature, it is common that the GEV distribution is used. For example, in a national 

assessment of the rainfall frequency regime of the United States, the GEV distribution 

was selected to represent daily AMAX series rainfall data (Bonnin et al., 2006). Also in 

regional analyses of other parts of Italy, e.g. Tuscany (Crisci et al, 2002) and Northern 

central Italy (Franchini and Galeati, 1994 and Brath et al., 1998 cited by Di Baldassarre 

et al., 2006), the GEV distribution has been shown to be a suitable regional distribution 

for the daily precipitation extremes. In part, this prevalence might be explained by the set 

of candidate distributions used; not every study adopts the attitude of Hosking and Wallis 

(1997) that other distributions than extreme value distributions should be considered. 

The estimated 100-year storm for site 90462 near Trento is comparable to the severe flood 

event in 1966, where 140-160 mm of rain fell over 2 days at the location of this site 

(Malguzzi et al., 2006). The fact that the 134 mm measured at this site on January 31– 

February 1 in 1986 did not coincide with an increase at the nearby discharge site high-

lights that it is not only the magnitude of an extreme precipitation event that has an impact 

on floods, but also the timing. 

To perform a flood risk assessment for the Adige basin, the results from the regional 

frequency analysis of precipitation extremes might be used as input to a rainfall-runoff 

model to estimate the flood frequency curve. This would likely be a preferable approach 

even if the region had been found homogenous for discharge, due to the poor data avail-

ability. This might require the index storm to be predicted at ungauged sites. The appro-

priate method might be found using the framework of Bocchiola et al. (2003). 

5.5. L-MOMENTS AND MEAN ANNUAL PRECIPITATION 

In previous studies where significant relationships between L-moments and MAP has 

been established (e.g. Schaefer, 1990; Di Baldassarre et al., 2006), MAP is used to define 

regions. Sites within a short interval of MAP are grouped and regional L-moments are 

calculated from the models. These relationships can then be used to assign an arbitrary 

site to a region, given that the MAP is known over the whole area. In effect, this allows 

the prediction of design storms at ungauged sites. 

The applicability of the linear relationships between the selected L-moments and MAP 

could be more thoroughly examined in Monte Carlo simulations. Many samples would 

be generated from the regional distribution and used to calculate a confidence interval. 

The capability of the model to reproduce the rainfall extremes could then be assessed by 

looking at the percentage of samples falling outside the confidence interval (see Di Bal-

dassarre et al., 2006 for a detailed description). 

However, assuming the linear relationships in this study to be true, it would still not be 

meaningful to subdivide sites into groups according to MAP. At least not for L-CV, where 

the slope is close to zero, meaning that the regional L-CVs would be more or less the 

same: for the observed MAP, the range would be 0.165-0.175. 
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It is also noted that the range of MAP is significantly shorter for the Adige basin than in 

the study areas of Schaefer (1990) and Di Baldassarre et al. (2006). However, the ob-

served range covers 500-1000 mm which is the interval where the decrease in L-moments 

is most notable in these studies. 

5.6. SEASONALITY ANALYSIS 

The mean timing of both precipitation and discharge maxima in the Adige basin are in 

line with results of larger scale studies using data from similar time periods (Blöschl et 

al., 2017; Parajka et al., 2010). 

Monthly distributions of discharge and precipitation AMAX occurrences had single 

peaks. This shows that Dmean values are not averages of two annual peaks, say snow melt 

in spring and heavy rainfall in autumn in the case of discharge maxima. The observation 

that the monthly distribution peak, as well as Dmean values, of discharge have earlier tim-

ing indicates that precipitation maxima do not necessarily trigger extreme flows, and that 

other generation processes play an important role. Given the high elevation of the basin 

and that discharge maxima typically occur in summer, the peak flows are most likely 

linked to snow melt (Parajka et al., 2010). It has been shown that the main effect of snow 

melt often is not the direct input of water to streams, but to increase antecedent soil mois-

ture (Parajka et al., 2010), thus amplifying the impact on stream flow of rainfall events. 

The observed discharge peaks are likely an effect of the interplay between melting snow, 

rain-on-snow events and heavy precipitation. A more complete picture of the hydromete-

orological regimes would be gained by analyzing the seasonality of soil moisture and 

temperature together with that of precipitation and discharge. 

The influence of dam regulation must also be considered. A study by Zolezzi et al. (2009) 

suggested that seasonal variation of discharge in Adige lessened because of the reservoirs 

built before the 1960s and still in use today. However, there is not a notable observed 

difference in either Dmean or r for sites in streams unaffected by reservoirs and for those 

downstream a reservoir. This indicates that the observed seasonality is governed by nat-

ural processes. 

Dam regulation might however explain the lower variability of discharge β-values, as the 

regulation may dampen variations in timing. The shift in discharge maxima was small, 

and it was difficult to assess potential causes without analyzing the temporal evolution of 

floods together with that of flood generation processes. While it was quite unexpected to 

see a shift to later floods, considering that climate change might rather cause earlier snow 

melts, the result for discharge shifts corresponded to that of Blöschl et al. (2017). 

5.7. UNCERTAINTIES 

This section aims at addressing uncertainties that has not been covered in the above sec-

tions. 
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5.7.1. Data 

It should be noted that time series in the database used in this study might be influenced 

by measurement errors. Information about type and placement of gauges, correction 

methods used etc. has not been available. Discharge data is often converted from meas-

ured water levels via rating curves; for flood data, the errors associated with estimated 

curves might be high. Typical precipitation errors include influence of wind, wetting and 

evaporation losses, blowing snow etc. These types of errors should be exacerbated for 

observations of extreme values.  It has been assumed that corrections for such errors have 

been made for the data labelled with verified quality. Unverified data has been included 

in the study, and potential errors are likely associated with an underestimation of the true 

values, and results should be on the conservative side. This does of course not account 

for reporting errors, calibration errors etc., which are an unknown source of uncertainty. 

The poor availability of discharge data and the presence of reservoirs in the stream net-

work have made the interpretation of the discharge statistics difficult, at least in analyses 

of trends and L-moments. When comparing the results of the seasonality analysis to pre-

vious studies mentioned in the above section, the availability of discharge data seems to 

have been adequate.  

5.7.2. Serial correlation 

The AMAX series were found to be affected by serial correlation to a degree. In the trend 

analysis, this was addressed by incorporating the method of Yue et al. (2002) which should 

minimize the influence on those results. For the regional frequency analysis of precipitation 

however, no steps were taken to reduce serial dependence. Landwehr et al. (1979) studied 

the effect of serial correlation on estimation of parameters and quantiles of the Gumbel 

distribution with probability weighted moments. They found that the efficiency of the esti-

mates decreased when using data randomly generated from a process with a serial correla-

tion coefficient of 0.5 (higher than the maximum coefficient observed in this study). Hosk-

ing and Wallis (1997) concluded from the results of Landwehr et al. (1979) that a small 

amount of serial dependence does not greatly affect the quality of quantile estimates. 

Schaefer (1990) found an average serial correlation of the magnitude 0.027 and considered 

that to be negligible (although no variance or range of coefficients was reported). The av-

erage serial correlation found in this study was 0.024 for precipitation. 

The approach has been to use the data as it is, but there could be an argument for excluding 

series with a serial correlation coefficient above a certain threshold. It could also be pos-

sible to reduce serial dependence of series by shifting the hydrological years to minimize 

the risk of maxima being generated from the same meteorological phenomena.  

5.7.3. Selection procedure 

The procedure for selecting appropriate time series aimed at being thorough, but one 

could argue it to subjective. To mitigate this, a validation of the method such as in Pa-

palexiou and Koutsoyiannis (2013) could be used. There, a Monte Carlo scheme was set 

up to find appropriate threshold values for the criteria by selecting a complete subset of 
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the record, finding the annual maxima and then modifying it to contain missing values. 

Annual maxima were then extracted from the modified subset by the proposed method 

with various criteria values. Finally, the two sets of annual maxima were compared to 

conclude which criteria values gave the best result. 

5.8. A NOTE ON SCALES 

In this study, precipitation and discharge extremes in the relatively small Adige river ba-

sin have been investigated to find their spatial and temporal characteristics, using daily 

data. However, if for example hourly precipitation had been analyzed instead, it may have 

shown to be much more influenced by convective summer storms and thus have a more 

well-defined seasonality, but also a larger degree of heterogeneity in L-moments. So, it 

is important to remember that the patterns that have emerged here ultimately depend on 

the chosen scale, both of time and space. 

6. CONCLUSIONS 

In this study, the characteristics of daily precipitation and discharge extremes in the Adige 

river basin down to the city of Trento were described. Annual maximum series for the 

period 1975–2014 were analyzed in terms of trends, seasonality and L-moments. The 

research questions may be answered as follows. 

1. A weak but significant signal of decreasing extremes was detected in the study 

period. A minority of the AMAX series of precipitation and discharge showed 

predominantly negative trends. The percentages of sites with significant negative 

trends were overall larger than the significance levels, i.e. more than is expected 

to be explained by randomness.  

2. (a) The Adige basin was found to be homogenous with respect to precipitation. 

The results do not support the assumption that the basin can be considered as a 

homogenous region for discharge. (b) The Pearson type III and generalized nor-

mal distributions were both found to be adequate regional frequency distributions 

for precipitation maxima. (c) The estimated annual maximum daily precipitation 

at Trento was between 114 and 148 mm/d for a 100-year return period. 

3. (a) A possible explanation for the spatial distribution of sample precipitation L-

moments was the main storm direction during autumn. (b) A weak relationship 

between mean annual precipitation (MAP) and both L-CV and L-skewness was 

observed, where the L-moment ratios showed a tendency to decrease with increas-

ing MAP. A linear model was significant at the 10% level for L-skewness. 

4. (a) Precipitation extremes were characterized primarily by autumn storms, alt-

hough the seasonality was rather weak. Discharge had a stronger seasonality with 

peaks occurring mainly in June and July. (b) This meant that the timing was not 

solely explained by rainfall maxima. (c) A minor shift towards later floods was 

observed. 
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Further research on the Adige basin could focus on the findings of the trend analysis. If 

only precipitation data is used, it would be possible to extend the time period and test if 

the negative trends prevail. Another focus could be the application and calibration of a 

rainfall-runoff model to predict floods in the basin, using the index storm developed here 

as input. 
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APPENDIX 

 

 

Figure A1. Locations of selected precipitation sites. Labels are site IDs 

 

Table A1. Summary of results for each precipitation site grouped by L-moments, discordancy 

measure (D), seaonality indices (Dmean and r) and trend analysis (Kendall’s τ and p-value) 

Site ID Record length L-location L-CV L-skewness L-kurtosis D Dmean r τ p 

1017 27 54.5 0.19 0.26 0.30 - 256 0.46 -0.25 0.08 

1032 29 54.0 0.16 0.35 0.27 2.5 267 0.43 -0.16 0.24 

1049 31 62.4 0.17 0.17 0.13 0.0 294 0.42 -0.07 0.62 

1050 30 68.0 0.18 0.21 0.10 0.4 267 0.36 -0.17 0.20 

1061 22 67.5 0.20 0.15 0.00 2.5 258 0.63 -0.09 0.61 

1112 30 69.7 0.17 0.24 0.18 0.2 292 0.48 -0.27 0.04 

1358 25 56.5 0.15 0.13 0.09 0.3 313 0.09 -0.15 0.31 

90014 23 39.2 0.13 -0.06 -0.02 2.8 242 0.35 -0.24 0.13 

90016 39 42.1 0.17 0.28 0.14 1.0 228 0.40 -0.11 0.33 

90017 39 46.9 0.14 0.23 0.19 1.2 250 0.51 -0.04 0.71 

90019 32 48.1 0.14 0.04 0.14 1.4 257 0.37 0.05 0.71 

90020 39 44.7 0.16 0.24 0.24 0.8 238 0.15 -0.04 0.72 

90025 37 40.5 0.18 0.21 0.15 - 231 0.47 -0.23 0.05 

90026 25 39.4 0.16 0.12 0.24 2.0 292 0.46 -0.24 0.11 

90033 23 46.5 0.14 0.01 0.19 - 230 0.60 -0.21 0.18 

90046 39 43.9 0.18 0.23 0.18 0.3 267 0.42 -0.07 0.55 

90060 37 47.7 0.20 0.25 0.17 0.7 273 0.22 0.00 0.99 

90063 36 47.0 0.19 0.13 0.00 2.2 253 0.32 -0.03 0.80 
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Site ID Record length L-location L-CV L-skewness L-kurtosis D Dmean r τ p 

90067 25 67.2 0.18 0.25 0.19 0.3 250 0.36 0.09 0.57 

90072 39 90.1 0.19 0.18 0.14 0.3 239 0.51 0.12 0.29 

90074 39 65.6 0.18 0.23 0.15 0.2 240 0.48 0.10 0.39 

90083 32 54.8 0.19 0.17 0.14 0.4 257 0.28 0.08 0.54 

90100 39 68.6 0.18 0.28 0.24 0.8 289 0.48 -0.08 0.47 

90104 37 79.8 0.24 0.23 0.16 4.5 266 0.32 -0.03 0.84 

90107 38 64.5 0.17 0.10 0.17 1.1 267 0.32 -0.13 0.27 

90130 32 52.9 0.20 0.12 0.11 1.5 212 0.51 0.16 0.21 

90133 39 60.1 0.15 0.05 0.12 1.0 252 0.45 0.09 0.45 

90138 39 49.3 0.18 0.21 0.08 0.6 236 0.54 -0.05 0.67 

90147 39 62.3 0.14 0.06 0.05 0.9 219 0.55 -0.05 0.65 

90162 39 43.7 0.17 0.22 0.09 0.5 214 0.72 0.05 0.67 

90166 39 45.1 0.16 0.11 0.10 0.2 257 0.51 -0.01 0.92 

90168 35 55.2 0.19 0.14 0.00 1.9 262 0.58 0.03 0.79 

90172 34 46.9 0.15 0.05 0.08 - 244 0.39 0.26 0.03 

90175 39 46.8 0.14 0.12 0.13 0.6 226 0.39 0.15 0.19 

90189 33 45.8 0.14 0.26 0.21 1.5 239 0.32 -0.02 0.88 

90192 29 50.3 0.13 0.15 0.09 1.5 211 0.54 -0.02 0.89 

90196 32 48.5 0.18 0.23 0.15 0.2 212 0.38 0.06 0.63 

90202 33 55.4 0.14 0.17 0.09 1.0 227 0.65 0.05 0.69 

90204 29 49.6 0.17 0.19 0.19 0.2 211 0.60 0.15 0.28 

90211 27 48.9 0.17 0.10 0.00 1.3 240 0.54 0.18 0.20 

90216 25 60.4 0.14 0.07 0.17 1.4 236 0.47 -0.17 0.26 

90219 36 48.8 0.16 0.08 0.07 0.5 273 0.44 -0.05 0.67 

90225 33 44.5 0.17 0.24 0.14 0.5 247 0.60 -0.17 0.17 

90233 32 44.5 0.18 0.14 0.07 - 222 0.65 0.27 0.03 

90236 39 55.4 0.15 0.11 0.14 0.4 256 0.38 0.10 0.37 

90239 24 45.5 0.15 0.14 0.21 1.0 218 0.48 0.18 0.25 

90244 37 43.0 0.17 0.25 0.13 0.6 215 0.71 -0.03 0.80 

90250 35 45.5 0.14 0.13 0.12 - 225 0.62 -0.16 0.20 

90253 32 51.7 0.14 0.17 0.07 - 228 0.64 -0.23 0.08 

90266 36 45.6 0.17 0.25 0.14 0.5 226 0.57 -0.15 0.21 

90267 37 47.3 0.13 0.11 0.05 1.5 213 0.71 -0.03 0.84 

90269 34 49.3 0.21 0.37 0.33 - 227 0.45 -0.36 0.00 

90275 30 51.3 0.14 0.09 0.13 0.7 234 0.42 -0.08 0.54 

90294 39 55.4 0.17 0.08 0.03 0.9 225 0.42 -0.08 0.51 

90298 36 54.1 0.17 0.15 0.16 - 238 0.46 -0.19 0.12 

90312 39 51.6 0.20 0.28 0.20 0.9 236 0.43 -0.14 0.21 

90337 23 47.5 0.18 0.21 0.15 0.2 240 0.63 -0.13 0.43 

90342 39 53.3 0.17 0.28 0.12 - 239 0.45 -0.30 0.01 

90353 30 56.4 0.15 0.23 0.14 0.6 241 0.44 -0.04 0.78 

90354 39 50.8 0.13 0.11 0.07 1.1 230 0.39 -0.06 0.62 

90363 29 60.5 0.15 0.12 0.12 0.2 263 0.35 -0.08 0.54 

90365 32 53.2 0.16 0.25 0.17 0.4 217 0.39 -0.11 0.38 

90384 37 57.0 0.16 0.12 0.07 - 252 0.40 -0.21 0.08 
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Site ID Record length L-location L-CV L-skewness L-kurtosis D Dmean r τ p 

90441 21 62.0 0.14 -0.04 0.09 2.6 303 0.35 -0.13 0.46 

90442 31 54.7 0.16 0.09 0.12 0.4 296 0.20 -0.25 0.05 

90443 27 46.8 0.14 0.15 0.17 0.8 235 0.37 -0.09 0.54 

90444 34 51.6 0.15 0.24 0.14 0.9 310 0.21 -0.03 0.79 

90445 25 72.4 0.14 0.10 0.13 0.7 258 0.39 -0.19 0.21 

90446 33 61.8 0.16 0.19 0.15 0.1 297 0.45 -0.09 0.49 

90447 31 59.3 0.18 0.20 0.15 0.2 295 0.22 -0.19 0.15 

90450 29 54.0 0.16 0.35 0.27 2.5 267 0.43 -0.16 0.24 

90451 29 63.7 0.18 0.32 0.21 1.0 282 0.53 -0.20 0.14 

90452 31 62.2 0.18 0.14 0.19 1.0 287 0.33 -0.13 0.32 

90454 23 76.5 0.15 0.12 0.01 1.2 295 0.46 0.02 0.91 

90456 31 67.5 0.18 0.20 0.13 0.1 272 0.37 -0.19 0.14 

90457 25 74.5 0.18 0.08 0.15 1.5 258 0.58 -0.04 0.78 

90461 25 66.8 0.19 0.18 0.05 1.2 262 0.67 -0.12 0.44 

90462 22 66.7 0.18 0.13 0.02 1.2 306 0.33 -0.10 0.53 

90463 24 68.0 0.19 0.25 0.23 0.8 291 0.27 0.06 0.71 

90467 27 54.5 0.19 0.26 0.30 - 256 0.46 -0.25 0.08 

90468 29 66.9 0.18 0.17 0.08 0.3 281 0.49 0.00 0.98 

90479 33 68.7 0.16 0.22 0.16 - 291 0.59 -0.33 0.01 

90527 32 71.9 0.19 0.12 0.14 1.4 269 0.40 -0.17 0.17 

90537 36 62.1 0.19 0.28 0.24 - 273 0.50 -0.20 0.09 

 

 

  



41 

 

 

Figure A2. Locations of selected discharge sites. Labels are site IDs 

 

Table A2. Summary of results for each discharge site grouped by L-moments, discordancy 

measure (D), seaonality indices (Dmean and r) and trend analysis (Kendall’s τ and p-value) 

Site ID Record length L-location L-CV L-skewness L-kurtosis D md r τ p 

90028 28 3.2 0.18 0.20 0.19 0.5 187 0.69 0.08 0.59 

90065 33 5.1 0.18 0.21 0.16 0.1 205 0.81 -0.02 0.88 

90128 37 7.0 0.23 0.25 0.13 0.5 209 0.65 -0.22 0.06 

90136 23 25.3 0.24 0.41 0.25 2.9 201 0.55 -0.31 0.05 

90141 23 15.6 0.14 0.33 0.26 1.7 185 0.85 -0.11 0.50 

90154 39 18.9 0.23 0.29 0.18 0.8 212 0.61 -0.10 0.37 

90173 33 4.5 0.18 0.24 0.12 0.5 196 0.54 0.02 0.88 

90178 30 6.4 0.15 0.26 0.16 0.5 178 0.73 -0.24 0.07 

90184 26 9.0 0.19 0.08 0.14 2.0 185 0.85 -0.06 0.69 

90190 29 18.7 0.13 0.15 0.18 1.0 181 0.91 -0.01 0.95 

90205 31 14.5 0.14 0.12 0.18 1.3 184 0.92 0.07 0.62 

90209 27 14.3 0.16 0.34 0.24 0.9 183 0.92 -0.19 0.17 

90231 32 7.5 0.21 0.27 0.13 0.4 212 0.51 0.05 0.73 

90237 37 7.3 0.15 0.28 0.17 1.0 189 0.77 -0.11 0.36 

90251 20 8.9 0.20 0.29 0.11 0.9 220 0.41 -0.19 0.26 

90339 39 7.1 0.18 0.19 0.08 - 193 0.68 -0.31 0.01 

90415 33 7.1 0.23 0.21 0.08 1.1 215 0.54 -0.33 0.01 
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Table A3. Results of sensitivity analysis of precipitation trends, with p-values averaged for each 

site and for each percentage of artificial gaps. Results are shown only for sites with p-values < 

0.10 (10% significance). 

Artificial gaps Site ID Avg. p-value 

0% 1112 0.045 

 90025 0.055 

 90233 0.032 

 90253 0.077 

 90342 0.008 

5% 1112 0.071 

 90025 0.067 

 90233 0.035 

 90342 0.016 

10% 1112 0.087 

 90025 0.088 

 90233 0.038 

 90342 0.027 

15% 90233 0.044 

 90342 0.037 

20% 90233 0.048 

 90342 0.050 

25% 90233 0.057 

 90342 0.064 

 

Table A4. Results of sensitivity analysis of discharge trends, with p-values averaged for each 

site and for each percentage of artificial gaps. Results are shown only for sites with p-values < 

0.10 (10% significance). 

Artificial gaps Site ID Avg. p-value 

0% 90136 0.048 

 90178 0.069 

 90339 0.006 

5% 90136 0.064 

 90339 0.017 

10% 90136 0.082 

 90339 0.033 

15% 90339 0.052 

20% 90339 0.077 

25% - - 
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In this section, formulas of the probability density functions 𝑓(𝑥), cumulative distribution 

functions 𝐹(𝑥) and quantile functions 𝑥(𝐹) are given (when defined) for the probability 

distributions included in this study. These expressions follow the parametrization of 

Hosking and Wallis (1997) and Hosking (2015). 

 

Gumbel distribution 

Parameters: 𝜉 (location) and 𝛼 (scale). 

𝑓(𝑥)  =  𝛼−1
 exp{−(𝑥 − 𝜉)/𝛼} exp[−exp{−(𝑥 − 𝜉)/𝛼}]   (A1) 

𝐹(𝑥) = exp [−exp {−(𝑥 − 𝜉)/𝛼}]      (A2) 

𝑥(𝐹) = 𝜉 − 𝛼 log (−log 𝐹)       (A3) 

 

Generalized Pareto distribution 

Parameters: ξ (location), α (scale) and k (shape). 

𝑓(𝑥) = 𝛼−1𝑒−(1−𝑘)𝑦,     𝑦 = {
−𝑘−1𝑙𝑜𝑔{1 − 𝑘(𝑥 − 𝜉)/𝛼},    𝑘 ≠ 0
(𝑥 − 𝜉)/𝛼 ,                                  𝑘 = 0

  (A4) 

𝐹(𝑥) = 1 − 𝑒𝑦         (A5) 

𝑥(𝐹) = {
𝜉 + 𝛼{1 − (1 − 𝐹)𝑘}/𝑘,   𝑘 ≠ 0

𝜉 − 𝛼 log(1 − 𝐹) ,              𝑘 = 0
     (A6) 

 

Generalized normal distribution 

Parameters: 𝜉 (location), 𝛼 (scale) and 𝑘 (shape). 

𝐹(𝑥) = Φ(𝑦),  𝑦 = −(1/𝑘)log{1 − 𝑘(𝑥 − 𝜉)/𝛼}   (A7) 

𝑥(𝐹) has no explicit analytical form. 𝑘 < 0 is the three-parameter lognormal distribution, 

𝑘 = 0 is the normal distribution, and 𝑘 > 0 is the reverse lognormal distribution. 

 

Generalized extreme-value distribution 

Parameters: 𝜉 (location), 𝛼 (scale) and 𝑘 (shape). 

𝑓(𝑥) = 𝛼−1𝑒−(1−𝑘)𝑦−𝑒−𝑦
,     𝑦 = {

−𝑘−1𝑙𝑜𝑔{1 − 𝑘(𝑥 − 𝜉)/𝛼},    𝑘 ≠ 0
(𝑥 − 𝜉)/𝛼 ,                                  𝑘 = 0

 (A8) 

𝐹(𝑥) = 𝑒−𝑒−𝑦
          (A9) 

𝑥(𝐹) = {
𝜉 + 𝛼{1 − (log 𝐹)𝑘}/𝑘,   𝑘 ≠ 0

𝜉 − 𝛼 log(−log 𝐹) ,           𝑘 = 0
     (A10) 
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Three types of extreme-value distributions with cumulative distribution functions as fol-

lows: 

Type I:   𝐹(𝑥) = exp (𝑒−𝑥),  −∞ ≤ 𝑥 ≤ ∞   (A11) 

Type II:  𝐹(𝑥) = exp(−𝑥−𝛿),  0 ≤ 𝑥 ≤ ∞    (A12) 

Type III:  𝐹(𝑥) = exp (−|𝑥|𝛿),  −∞ ≤ 𝑥 ≤ 0   (A13) 

Corresponding to 𝑘 = 0, 𝑘 < 0 and 𝑘 > 0. 

 

Generalized logistic distribution 

Parameters: 𝜉 (location), 𝛼 (scale) and 𝑘 (shape). 

𝑓(𝑥) =
𝛼−1𝑒−(1−𝑘)𝑦

(1+𝑒−𝑦)2 ,     𝑦 = {
−𝑘−1𝑙𝑜𝑔{1 − 𝑘(𝑥 − 𝜉)/𝛼},    𝑘 ≠ 0
(𝑥 − 𝜉)/𝛼 ,                                  𝑘 = 0

   (A14) 

𝐹(𝑥) = 1/(1 + 𝑒−𝑦)        (A15) 

𝑥(𝐹) = {
𝜉 + 𝛼[1 − {(1 − 𝐹)/𝐹}𝑘]/𝑘,   𝑘 ≠ 0

𝜉 − 𝛼 log{(1 − 𝐹)/𝐹} ,              𝑘 = 0
     (A16) 

 

Pearson type III distribution 

Parameters: 𝜇 (location), 𝜎 (scale) and 𝛾 (shape). 

When 𝛾 ≠ 0, let  

𝛼 = 4/𝛾2,         (A17) 

𝛽 = 0.5 𝜎|𝛾|         (A18) 

and  

𝜉 = 𝜇 − 2𝜎/𝛾.         (A19) 

For 𝛾 > 0, 

𝑓(𝑥) =
(𝑥−𝜉)𝛼−1𝑒−(𝑥−𝜉)/𝛽

𝛽𝛼Γ(α)
       (A20) 

𝐹(𝑥) = 𝐺 (𝛼,
𝑥−𝜉

𝛽
) /Γ(α)       (A21) 

where Γ(. ) is the gamma function, 

Γ(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡
∞

0
        (A22) 

𝐺(. ) is the incomplete gamma function, 

𝐺(𝛼, 𝑥) = ∫ 𝑡𝛼−1𝑒−𝑡𝑑𝑡
∞

0
       (A23) 
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If 𝛾 = 0, the distribution becomes the Normal distribution. If 𝛾 < 0, then 

𝑓(𝑥) =
(𝜉−𝑥)𝛼−1𝑒−(𝜉−𝑥)/𝛽

𝛽𝛼Γ(α)
       (A24) 

𝐹(𝑥) = 1 − 𝐺 (𝛼,
𝜉−𝑥

𝛽
) /Γ(α)        (A25) 

In each case of 𝛾, 𝑥(𝐹) lacks an explicit analytical form. 

 

Kappa distribution 

Parameters: 𝜉 (location), 𝛼 (scale), 𝑘 and ℎ. 

𝑓(𝑥) = 𝛼−1{1 − 𝑘(𝑥 − 𝜉)/𝛼}1/𝑘−1{𝐹(𝑥)}1−ℎ      (A26) 

𝐹(𝑥) = [1 − ℎ{1 − 𝑘(𝑥 − 𝜉)/𝛼}1/𝑘]
1/ℎ

      (A27) 

𝑥(𝐹) = 𝜉 +
𝛼

𝑘
{1 − (

1−𝐹ℎ

ℎ
)

𝑘

}        (A28) 

ℎ = −1 is the generalized logistic distribution, ℎ = 0 is the generalized extreme-value 

distribution, and ℎ = 1 is the generalized Pareto distribution. 


