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As the need for climatic data is increasing in times of climate change and water scarcity, remote 

sensing (RS) and hydrological modelling are ways to battle these problems, especially in data scarce 

areas. The actual evapotranspiration (ETa) is one of the key parameters when assessing the water 

balance and a good estimate of this parameter is thus of great importance. In this study a hydrological 

model was created with the Soil and Water Assessment Tool (SWAT) over the Malwathu Oya river 

basin, Sri Lanka, and the SWAT ETa estimates were compared to RS derived ETa from FAO’s open 

access database WaPOR. A sensitivity analysis and a calibration with observed streamflow data of 

the SWAT model was conducted with the SUFI-2 algorithm in SWAT-CUP. The calibration was 

satisfactory and showed the following values for the performance parameters:  R2 = 0.72, Nash-

Sutcliffe Efficiency, NSE = 0.69, and Percent of Bias, PBIAS = -10.4. The most sensitive parameters 

were CN2 (runoff curve number for moisture condition II), SOL_AWC (soil available water 

capacity), and ESCO (soil evaporation compensation factor). The water balance partitioning from 

the calibrated SWAT model showed a ratio of 0.68 between ETa and precipitation as an annual 

average between 2012–2020.  

 

In the comparison between SWAT ETa and WaPOR ETa the SWAT ETa showed a clear 

underestimation, particularly during the drier Yala growing season (May – August). However, the 

SWAT land use classes representing the cultivated rice fields agreed well with WaPOR while the 

forest and range grasses were underpredicted. To increase the performance of SWAT in estimating 

ETa the following was recommended: improvement of the simulation of the shallow aquifers, more 

accurate forest parameters, deactivation of the default dormancy period in SWAT, calibration with 

ETa instead of streamflow, and a higher resolution soil map together with more soil measurements. 
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Förbättrad förståelse av vattenbalansen i Malwathu Oyas avrinningsområde med hjälp av 

SWAT och fjärranalys 

Alexander Fors 

Eftersom behovet av klimatdata ökar i tider av klimatförändringar och vattenbrist är fjärranalys (RS) 

och hydrologisk modellering exempel på metoder för att lösa dessa problem, särskilt i områden med 

brist på data. Den faktiska evapotranspirationen (ETa) är en nyckelparameter vid bedömning av 

vattenbalansen och en bra uppskattning av denna parameter är därför av stor betydelse. I denna 

studie skapades en hydrologisk modell med Soil and Water Assessment Tool (SWAT) över 

avrinningsområdet Malwathu Oya i Sri Lanka, och SWAT ETa -uppskattningarna jämfördes med 

RS-beräknad ETa från FAO:s öppna databas WaPOR. En känslighetsanalys och en kalibrering med 

observerade flödesdata av SWAT-modellen utfördes med SUFI-2-algoritmen i SWAT-CUP. 

Kalibreringen var tillfredsställande och visade följande värden för prestandaparametrarna: R2 = 

0,72, Nash-Sutcliffe-Efficiency, NSE = 0,69 och Percent of Bias, PBIAS = -10,4. De mest känsliga 

parametrarna var CN2 (avrinningskurvtal för fukttillstånd II), SOL_AWC (jordens tillgängliga 

vattenkapacitet) och ESCO (kompensationsfaktor för markavdunstning). Vattenbalansfördelningen 

från den kalibrerade SWAT-modellen visade ett förhållande på 0,68 mellan ETa och nederbörden 

som ett årligt medelvärde mellan 2012–2020. 

I jämförelsen mellan SWAT ETa och WaPOR ETa visade SWAT ETa en tydlig underskattning, 

särskilt under den torrare Yala-växtsäsongen (maj – augusti). Däremot överensstämde SWAT-

markanvändningsklasserna som representerade de odlade risfälten väl med WaPOR medan skog och 

gräsfälten var underskattade. För att öka prestandan för SWAT vid uppskattning av ETa 

rekommenderades följande: förbättring av simuleringen av de grunda akvifärerna, förbättrade 

skogsparametrar, inaktivering av den automatiska växtviloperioden i SWAT, kalibrering med ETa i 

stället för flöde och en jordartskarta med högre upplösning samt fler jordprover. 

 

Nyckelord: faktisk evapotranspiration, fjärranalys, Malwathu Oya, Sri Lanka, SWAT-modellering, 

SWAT-kalibrering, vattenbalans, WaPOR
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I en tid med klimatförändringar och när människors behov av vatten för konsumtion 

och till jordbruk kan bli en bristvara är det viktigt med ett klokt användande av 

vattenresurser. För att kunna använda vatten mer resursklokt krävs beräkningar av 

vattenförbrukningen i landskapet och detta kräver mätdata, något som traditionellt 

samlats in via markobservationer. Mängden tillgängliga data från 

markobservationer är dock inte alltid tillräcklig och särskilt inte i 

utvecklingsområden. En av de viktigaste parametrarna vid beräkning av 

vattenförbrukning är den faktiska evapotranspirationen (ETa). ETa beskriver hur 

mycket vatten som tillförs atmosfären från avdunstning från jorden och från det 

vatten som växter transpirerar och det är därför viktigt med en bra uppskattning av 

ETa för att räkna på nyttjandet av vattenresurser. Med hjälp av fjärranalys kan ETa 

beräknas med en hög tidsupplösning utan någon inblandning av markobservationer 

och därmed underlätta beräkningen av användandet av vattenresurser i områden 

med låg datatillgänglighet. FN:s jordbruksorganisation FAO har därför utvecklat 

en dataportal som kallas WaPOR med fritt tillgängliga fjärranalysdata över bland 

annat ETa. 

 

I denna studie undersöktes hur väl ETa från WaPOR stämmer överens med 

oberoende ETa-data beräknad med den hydrologiska modellen SWAT för att 

undersöka tillförlitligheten hos WaPOR. SWAT-modellen kalibrerades med 

observerade flödesdata och en känslighetsanalys av dess parametrar gjordes även. 

Detta gjordes i avrinningsområdet Malwathu Oya i norra delen av Sri Lanka som 

ligger i landets torra zon och som därför är drabbat av torka under delar av året. En 

förbättrad förståelse av vattenresursanvändningen i området är därför viktig. 

 

Kalibreringen med flödesdata som gjordes för SWAT-modellen var 

tillfredsställande enligt de prestandaparametrar som undersöktes och de mest 

känsliga parametrarna var de som styrde markens benägenhet för avrinning och de 

som hade med jordens vattenhållandeförmåga och avdunstning att göra. Ett årligt 

medelvärde på 1361 mm nederbörd och 922 mm ETa beräknades i Malwathu Oya 

från SWAT-modellen. Från jämförelsen mellan WaPOR och SWAT ETa visade 

SWAT mycket lägre värden, särskilt under den torrare växtsäsongen. Detta 

förklarades bland annat av brist på vatten i SWAT-modellen till följd av en icke-

tillfredsställande simulering av vattnet i de grunda akvifärerna, andra orsaker var 

att växterna i SWAT automatiskt gick in i en viloperiod där de tappade en del av 

sin biomassa och därmed förmåga att transpirera och att en kalibrering med ETa-

data i stället för flöde troligtvis hade gett ett mer tillförlitligt resultat. 
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In a time where climate change is impacting people’s access to water for domestic 

consumption and agricultural use (Pörtner et al. 2022) it is becoming more and more 

important to be able to monitor water use in an efficient way to battle water scarcity. 

To accomplish this data on various hydrometeorological parameters are needed 

which traditionally have been collected from ground observations, however, since 

the 1980s the amount of ground observations has been in a global decline (García 

et al. 2016). This is especially the case in developing regions where there is a 

scarcity of real-time ground observations due to a lack of accessibility, insufficient 

quality control, and availability (García et al. 2016). A tool that can be used as a 

solution for these problems is the use of satellite remote sensing. Satellite-based 

sensors can provide data of practically all components of the hydrological cycle, at 

a high temporal resolution and large spatial coverage, therefore facilitating water 

accounting and agricultural management (Sheffield et al. 2018). Actual 

evapotranspiration (ETa) is one of the key parameters of the hydrological cycle and 

represents the water moving to the atmosphere from soil evaporation and plant 

transpiration (Brutsaert & York 2005). To assess the water balance in a watershed 

it is therefore important with a good estimate of this parameter. 

The Malwathu Oya river basin in the North-Central province of Sri Lanka is the 

study area of this project. It is the country’s second largest river basin and one of 

the major agricultural areas with rice as the dominant crop (Sivakumar et al. 2019; 

FAO n.d.a). The main sources of irrigation in the Malwathu Oya river basin are a 

large number of ancient rainfed reservoirs which sequentially drains into the river 

forming a tank cascade system (Geekiyanage & Pushpakumara 2013; Sivakumar et 

al. 2019; FAO n.d.a). It is located in the dry zone and because of this and climate 

change the river basin is prone to water scarcity at different times of the year, 

particularly in the Yala season (May – August) (FAO n.d.a). Therefore, the current 

management could be better informed by using high resolution data to improve the 

water use efficiency. 

To address data scarcity on water and land productivity indicators in Sri Lanka, the 

Food and Agriculture Organization of the United Nations (FAO) has together with 

partners developed an open access database called WaPOR (Water Productivity 

through Open access of Remotely sensed derived data) which features various 

parameters for monitoring water productivity (FAO n.d.a). By using ETa estimates 

from WaPOR it is possible to assess the water balance and to supplement 

hydrometeorological data. This can help support the United Nation’s Sustainable 

Development Goals SDG 2, zero hunger, and SDG 6.4, water use and scarcity. 

However, to increase the accuracy of remote sensed data there is a need to validate 

against independent data to ensure performance and reliability. Thus, to improve 

1. Introduction  
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the understanding of water balance in the Malwathu Oya river basin this study 

investigated how well remote sensing estimates of ETa from WaPOR performed 

against ETa obtained from the hydrological model SWAT (Soil and Water 

Assessment Tool) and the potential improvements of SWAT in estimating ETa. 

1.1. Aims and Objective 

The objective of the thesis is to compare remote sensing estimates of actual 

evapotranspiration (ETa) from the WaPOR database in the Malwathu Oya river 

basin with modelled ETa from the hydrological model (SWAT) with the goal of 

improving the understanding of the river basin water balance and the accuracy of 

the remote sensing data. Potential improvements of the SWAT model in estimating 

ETa are also investigated. 

The project will combine literature studies and data collection in the Malwathu Oya 

river basin to support modelling approaches, and evaluation and validation of the 

WaPOR ETa data. 

1.2. Research Questions 

• What is the water balance partitioning in the Malwathu Oya river basin 

based on a streamflow calibrated SWAT model? 

• What SWAT parameters are sensitive to streamflow? 

• How does remote sensing derived WaPOR ETa compare to SWAT 

modelled ETa? 

• What are the potential improvements in the SWAT model for estimating 

ETa? 
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2.1. Remote Sensing 

The use of remote sensing (RS) technology is now widely used as a tool for 

collecting hydro-meteorological data and can provide data over large spatial extent 

with high temporal resolution, thus facilitating the use of hydrological models 

compared to before when sufficient data was harder to acquire (Kumar & 

Reshmidevi 2013). The satellites used for remote sensing obtain data based on the 

radiation intensity of different portions of the electromagnetic spectrum. It is either 

by passive RS, the emission by the earth’s surface from the sun (measured in the 

visible, near-infrared (NIR), thermal bands, or microwave bands), or from active 

RS, which measures the microwave radiation reflected by the surface from emission 

by the instrument (Kumar & Reshmidevi 2013; García et al. 2016). The passive RS 

sensors, also called optical RS when operating in the visible and NIR bands, are 

used for estimating parameters related to the vegetation and soil, such as land cover, 

Normalized Difference Vegetation Index (NDVI), and land surface temperature 

which can be used in the estimation of ETa (van Dijk & Renzullo 2011). 

Nonetheless, a major limitation with optical RS techniques is the presence of cloud 

cover which it has a low capability of penetrating, thus leading to lower data quality. 

This is especially problematic in tropical regions where the cloud cover is frequent, 

like in Sri Lanka (Kumar & Reshmidevi 2013). 

2.2. Evapotranspiration 

Evapotranspiration (ET) is the combination of evaporation of water from the soil 

surface and transpiration by the crop. Evaporation is the process when liquid water 

is transforming into vapour while being removed from the surface of the liquid 

(Allen et al. 1998). For water to be evaporated energy is required and in nature 

direct solar radiation provides the majority of this energy whereas a minor part 

comes from the ambient air temperature (Allen et al. 1998). The difference in 

vapour pressure between the evaporating surface and the surrounding atmosphere 

is the driving force of this process and as the evaporation continues the surrounding 

air will start becoming saturated and evaporation will decrease or cease unless wind 

is transporting the saturated wet air to the atmosphere (Monteith & Unsworth 2013; 

Null et al. 2016). This process is strongly dependent on the speed of the wind and 

other important parameters related to the evaporation process are air humidity, air 

temperature, and solar radiation (Null et al. 2016).  

2. Background 
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Transpiration is the loss of water from vaporisation of liquid water within plant 

tissues to the atmosphere in the process of photosynthesis (Allen et al. 1998; 

Kirschbaum 2004). The plant loses most of the water by transpiration off the plant 

leaves as carbon dioxide needed for photosynthesis is absorbed from the 

atmosphere (Taiz & Zeiger 2002). The amount of water that is being transpired to 

the atmosphere is regulated by the aperture of the stomata which is varying with 

atmospheric water vapour pressure deficit, CO2 concentration, leaf temperature, 

and leaf irradiance (Cowan 1978). Only a small fraction of the water that is taken 

up from the soil is used within the plant, the rest is lost by transpiration (Allen et 

al. 1998). There are many different parameters to consider when assessing 

transpiration. Transpiration shares the same parameters that affect evaporation, 

namely, wind speed, air humidity, air temperature, and solar radiation. Apart from 

those factors the rate of transpiration also depends on soil and crop properties like 

soil water content, soil conductivity of water to the roots, soil water salinity, and 

crop type (C3 or C4), to name a few (Cowan 1978; Allen et al. 1998; Munn 2002).  

The ratio between evaporation and transpiration varies during the growing stage of 

the crop. In an early stage most of the water is lost through evaporation, but as the 

crop grows and develops a larger crop canopy, the ET ratio will be dominated by 

transpiration (Ventura et al. 2001). 

2.2.1. Reference, Potential, and Actual Evapotranspiration 

The reference evapotranspiration ETo is defined as the evapotranspiration from a 

reference surface that is well watered (Allen et al. 1998). The reference surface is a 

hypothetical grass crop with predefined parameters such as albedo, crop height, and 

bulk surface resistance (Allen et al. 1998). ETo is only affected by climatic 

parameters and is computed from weather measurements and solar radiation (FAO 

2020a), crop characteristics and soil factors are not considered (Allen et al. 1998). 

It can for example be used as a reference that can be related to the ET of other 

surfaces, or to compare ET between different seasons and locations (Allen et al. 

1998).  

The potential evapotranspiration ETp is referred to as “the possible rate of loss 

without any limits imposed by the supply of water” (Beven 2020). It is thus the 

evaporation that can occur when all soil and plant surfaces are wet, or the 

evaporation from a free water surface (Null et al. 2016). The actual 

evapotranspiration ETa is defined by the amount that is actually evapotranspired 

and is limited by the water supply. 
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2.2.2. Penman-Monteith Equation 

The Penman-Monteith (P-M) equation is the FAO’s standard equation for 

calculating reference and actual evapotranspiration (FAO 2020a). It is a 

combination equation which combines the energy balance equation and the 

aerodynamic equation (FAO 2020a) and is expressed in Equation 1. 

 

 𝜆𝐸𝑇 =
∆(𝑅𝑛 − 𝐺) + ρ𝑎𝑐𝑝

(𝑒𝑠 − 𝑒𝑎)
𝑟𝑎

∆ + γ(1 +
𝑟𝑠

𝑟𝑎
)

 (1) 

 

where: 

λ = latent heat of evaporation [J kg-1] 

E = evaporation [kg m-2 s-1] 

T = transpiration [kg m-2 s-1] 

Rn = net radiation [W m-2] 

G = soil heat flux [W m-2] 

ρa = air density [kg m-3] 

cp = specific heat of dry air [J kg-1 K-1] 

ea = actual vapour pressure of the air [Pa] 

es = saturated vapour pressure [Pa] which is a function of the air temperature 

Δ = slope of saturation vapour pressure against the temperature curve [Pa K-1] 

ϒ = psychrometric constant [Pa K-1] 

ra = aerodynamic resistance [s m-1] 

rs = bulk surface resistance [s m-1] 

 

These parameters are mainly measured or are calculated from weather data (Allen 

et al. 1998). The P-M equation is generally performing best of all methods for 

estimating reference evapotranspiration when considering diverse climates (Null et 

al. 2016) but the disadvantage is the large amount of data needed. 

2.2.3. Hargreaves Method 

The Hargreaves method only requires temperature data and extra-terrestrial 

radiation to calculate ETp, thus making it a good method in data scarce regions. The 

method was developed using weighing lysimeters to calibrate the equation 

(Equation 2) (Hargreaves & Samani 1985). The limitation of the Hargreaves 

method is its performance under extreme weather conditions and it tends to 

overestimate ETp in hot and humid conditions (as in Sri Lanka) (Trajkovic 2007; 

Gelcer et al. 2010; Sivaprakasam et al. 2011). 

 

 𝜆𝐸𝑜 = 0.0023 × 𝐻0 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 × (𝑇𝑎𝑣 + 17.8) (2) 
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𝜆 is the latent heat of vaporisation (MJ kg-1), 𝐸𝑜 is the potential evapotranspiration 

(mm d-1), 𝐻0 is the extra-terrestrial radiation (MJ m-2 d-1), 𝑇𝑚𝑎𝑥 is the maximum air 

temperature on a given day (°C), 𝑇𝑚𝑖𝑛 is the minimum air temperature on a given 

day (°C), and 𝑇𝑎𝑣 is the mean air temperature on a given day (°C). 

2.2.4. Thornthwaite’s Method 

Thornthwaite’s method (Thornthwaite 1948) is another way of estimating ETp with 

temperature as the only climatic data input. The monthly ETp is estimated after 

adjusting for variable daylight and length of the months (Willmott et al. 1985) and 

is shown in Equation 3. Thornthwaite’s method estimates ETp best in humid 

climates but with a substantial underestimation in drier climates (Jensen et al. 

1990). 

 𝐸𝑇𝑝 = 16 × (
10 × 𝑇𝑚𝑒𝑎𝑛

𝐽
)

𝛼

×
𝑁 × 𝑛

365
 (3) 

 

Where ETp is the mean monthly potential evapotranspiration (mm/month), Tmean is 

the mean monthly temperature (°C), J is the annual heat index, α is the function of 

the annual heat index, N is the mean length of daylight of the days in the month 

(hours), and n is the number of days in the month. 

2.3. WaPOR 

The WaPOR database provides remotely sensed derived data over Africa, the Near 

East, and Sri Lanka, and on three different levels of spatial resolution: level 1 (250 

m), level 2 (100 m), and level 3 (30 m) (FAO 2020a, n.d.a). The data component 

used in this study is ETIa (actual evapotranspiration and interception) which has a 

temporal resolution of dekadal, monthly and annual values (FAO 2020a). The 

spatial resolution that will be used in this study is level 2 (100 m). 

Interception is the process of rainfall being intercepted by the leaves of the plants, 

and then evaporated directly from their surface (FAO 2020a). The fraction of 

intercepted rain is relatively high when precipitation is low but decreases rapidly 

with increasing precipitation (FAO 2020a). Interception is determined by the 

vegetation cover (cveg), leaf area index (LAI), and precipitation (P) and is expressed 

in Equation 4 (FAO 2020a): 

 𝐼𝑚𝑚 = 0.2𝐼𝐿𝐴𝐼(1 −
1

1 +
𝑐𝑣𝑒𝑔𝑃

0.2𝐼𝐿𝐴𝐼

) (4) 
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The E and T in WaPOR are calculated by using the ETLook model (Bastiaanssen 

et al. 2012) which is based on the FAO Penman-Monteith equation with an adaption 

for remote sensing input data (FAO 2020a). The data components WaPOR uses for 

calculating E, T, and I are shown in Figure 1. 

 

Figure 1: Data components used for calculating E, T, and I in WaPOR (FAO 2020a). 

 

The E, T, and I are calculated on a dekadal basis and precipitation, weather data, 

and solar radiation are daily inputs, NDVI, soil moisture stress, and surface albedo 

are dekadal inputs and land cover is annual input (FAO 2020a). 

 

The accuracy of WaPOR produced ETIa is dependent on the presence of cloud cover 

in which case the optical satellite data such as NDVI cannot give information with 

a high temporal variability. When an area is covered by clouds WaPOR produces 

NDVI composites that fill gaps and missing data, and the accuracy of these 

composites get lower with a longer period of cloud cover (FAO 2020a). 

 

Validation of WaPOR ETIa products has previously been made in Africa and the 

Near East. In the WaPOR V2 quality assessment (FAO 2020b) it is found that there 

is a very high level consistency between level 1 and level 2 ETIa data on a basin 

scale, and that for annual level 1 ETIa data in Africa the fraction of ETIa/P was >1 

on 55% occasions for all basins between 2009-2018. ETIa was also overestimated 

on average compared to the physical water balance on a basin scale. Moreover, 

Blatchford et al. (2020) found that WaPOR is overestimating ETIa in dry and hot 

water-stressed conditions and in irrigated fields in Africa. No such studies have 

been performed in Sri Lanka however, so the same results are not necessarily the 

case in the climate there. 
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3.1. Site Description 

Sri Lanka’s topography consists of highlands in the south-central part of the country 

with an altitude of more than 2500 m, the other parts of the country are characterised 

by lowland plains (Geekiyanage & Pushpakumara 2013). Furthermore, Sri Lanka 

is divided into three climatic zones; a dry zone, a wet zone, and an intermediate 

zone (Muthuwatta et al. 2017). The dry zone lies in the north and eastern parts of 

the island and receives less than 1,750 mm of annual rainfall, the wet zone is in the 

south-western area and receives more than 2,500 mm of rainfall annually, and the 

intermediate zone lies between the two former zones and receives an intermediate 

amount of rain (Muthuwatta et al. 2017). 

 

The yearly climate can be divided into four separate climate seasons, namely the 

first inter-monsoon from March to April, the south-west monsoon from May to 

September, the second inter-monsoon from October to November, and lastly the 

north-east monsoon from December to February (Muthuwatta et al. 2017). 

Moreover, the growing seasons are divided in two different periods; the Maha 

season, which is the major growing season across the whole country, and the Yala 

season which is the minor growing season of the dry zone (Muthuwatta et al. 2017). 

Maha begins in September and continues until March the following year and Yala 

begins in May and ends in August (Department of Census and Statistics n.d.). 

 

The Malwathu Oya river basin is located in the dry zone and in the lowland plains. 

The location as well as the weather stations in the area can be seen in Figure 2. The 

size of the basin that is modelled in this study is 3,052 km2 with elevation ranging 

from -10 to 721 m from the outlet in the northwest to the south. Rice is the main 

crop in the area (FAO n.d.a) and around 15% of the total basin area is used for 

paddy cultivation, for the most part during the Maha season (Muthuwatta et al. 

2017). The irrigation in the dry zone is based on 7,620 ancient irrigation tanks, most 

of these are connected and form so called tank cascade systems, enabling water 

supply for the dry parts of the year (Panabokke et al. 2002). 

 

3. Materials and Methods 
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Figure 2: Location of the Malwathu Oya river basin in Sri Lanka with the three climate zones 

(Harischandra et al. 2016). The weather stations and discharge station in the river basin are also 

marked. 

 

Figure 3 shows the mean monthly precipitation, ETp, and Tmax and Tmin for the years 

2010-2020 and their standard deviations based on daily precipitation and 

temperature data (Department of Meteorology Sri Lanka) from the weather stations 

seen in Figure 2. The mean annual precipitation between 2010 and 2020 is 1392 

mm y-1. The Maha season from September – March, received on average 1045 mm 

season-1 and the Yala season from May – August, received on average 226 mm 

season-1 between 2010 – 2020. The mean ETp is 1828 mm y-1 and was calculated 

with Thornthwaite’s method (Thornthwaite 1948). The mean monthly maximum 

temperature is 32 °C and the mean minimum temperature is 24 °C. 
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Figure 3: Monthly Average P (Maha season in orange bars and Yala in green), ETp, Tmax and Tmin 

between 2010-2020 and their standard deviations. Calculated with daily data from weather stations 

(Department of Meteorology Sri Lanka) in and around the Malwathu Oya river basin.  

3.2. Soil Sampling and Measurement of Infiltration Rate 

Six soil samples were taken at 30 cm depth in Anuradhapura and were analysed for 

bulk density, texture, and Available Water Capacity (AWC) (which was derived 

from the texture). The samples were taken at three different locations with two 

samples at each site. Furthermore, the infiltration rate was determined at one 

location to derive the saturated hydraulic conductivity. For a detailed description of 

the methods used, see Appendix A. The location of where the soil samples were 

taken, and the measurement of infiltration rate was conducted can be seen in Figure 

4. The figure also shows the soil map of the area which was used in the SWAT 

model with their different soil classes. The distribution and description of the 

different soils is shown in Table 1. The calculated bulk density, soil textures, AWC, 

and saturated hydraulic conductivity can be seen in Table 2.  
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Figure 4: Soil map of Malwathu Oya river basin from NRMC, Sri Lanka, (https://doa.gov.lk/nrmc/) 

with the different soil classes and the area where the soil measurements and harvest index 

measurements were conducted. 

Table 1: Description of the soil classes shown in the soil map. The soil classes are extracted from 

the Harmonized World Soil Database (HWSD), https://www.fao.org/soils-portal/data-hub/soil-

maps-and-databases/harmonized-world-soil-database-v12/en/. 

Soil Class Texture Hydrologic Soil Group Area (km2) 

Fr-3699-1 Sandy clay loam C 5.80 

Lc-3775-1 Loam C 2,157 

Zg-3888-1 Loam C 145.3 

Lc-6664-1 Loam C 744.1 

 

Sample 

no. 

Bulk 

density (g 

cm-3) 

Texture class Sand 

% 

Silt 

% 

Clay 

% 

AWC 

% 

Ks 

(mm/hr) 

1 1.42 Sandy loam 84.4 2.3 13.3 5.8 

104 

2 1.27 Loamy sand 85.5 4.9 9.6 5.6 

3 1.31 Sandy loam 78.1 10.0 11.9 7.1 

4 1.67 Loamy sand 87.1 7.2 5.7 6.1 

5 1.77 Loamy sand 80.6 11.8 7.6 6.6 

6 1.61 Loamy sand 87.1 5.9 7.0 5.3 

Table 2: The measured soil parameters from the field samples. 

https://doa.gov.lk/nrmc/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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Mean 1.50 Loamy sand 83.8 7.0 9.2 6.1 104 

 

The mean measured soil texture class was loamy sand and the texture class of the 

soil in the sample area Lc-6664-1 is a loam. According to a study by (Rosemary et 

al. 2017) where 58 soil samples were taken in the alfisol catena of the dry zone in 

the first soil layer (0-30 cm), roughly 40 km southwest of this study’s sample area, 

61 % of the samples were sandy loam, 30 % loamy sand,  and 9 % sandy clay loam.  

3.3. Measurement of Harvest Index and Maximum Rooting 

Depth of Rice 

The mean value of the harvest index (HI) of rice was calculated based on three 

measurements close to Anuradhapura, their location is shown in Figure 4. For a 

detailed description of the methods used to determine the Harvest index see 

Appendix A. The maximum rooting depth of the rice was calculated from the same 

three measurement sites as the harvest index by measuring the longest root of the 

rice plants of a total of 20 plants divided between the three locations and then 

calculating the mean value. The mean values were used as input in the SWAT 

model. The results from the measurements can be seen in Table 3. 

Table 3: Mean, minimum (min), maximum (max), and standard deviation (SD) of the measured 

harvest index and maximum rooting depth of rice. 

Variable Harvest index (HI) Maximum rooting 

depth (m) 

Mean 0.324 0.11 

Min 0.280 0.060 

Max 0.350 0.14 

SD 0.0316 0.020 

 

3.4. Soil and Water Assessment Tool (SWAT) 

The Soil and Water Assessment Tool (SWAT) with the ArcGIS extension 

ArcSWAT (version 2012.10_5.24) was used in this project to assess the water 

balance in the Malwathu Oya river basin and to validate the SWAT ETa with 

WaPOR ETa. 

 

SWAT is a physically-based continuous time hydrological model with distributed 

landscape elements (so called Hydrologic Response Units, HRUs), that can be used 
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to simulate the water balance in a watershed over long time periods (Neitsch et al. 

2011). The model has been applied in many different climatic zones and is one of 

the most used river basin-scale hydrological models worldwide (Gassman et al. 

2014). The flexibility in SWAT to describe various environmental conditions and 

an open source code are some of the reasons behind its extensive use (Gassman et 

al. 2014). 

 

To determine ETa SWAT is first calculating ETp, which in this study is done with 

Hargreaves method. Next, the intercepted rainfall will be evaporated and thereafter 

a calculation of the maximum amount of transpiration and soil evaporation is made. 

The actual transpiration is then determined by the soil available water and the actual 

soil evaporation is determined by partitioning of the soil evaporative demand 

between the different soil layers (Neitsch et al. 2011). 

 

There are several studies where SWAT has been applied in the dry zone of Sri 

Lanka. The Kala Oya river basin just south of this study’s river basin Malwathu 

Oya was modelled with SWAT by (Iresh et al. 2021). The Kala Oya river basin is 

of similar size to Malwathu Oya and the streamflow for two gauging stations in the 

basin was simulated with a calibrated SWAT model with good simulated results for 

daily streamflow (Iresh et al. 2021). Furthermore, in a study by (Seenithamby & 

Nandalal 2021) SWAT was used to estimate the runoff/precipitation ratio in the 

Yan Oya river basin located near the Malwathu Oya river basin where the results 

showed a good linear relationship between runoff and precipitation. 

3.4.1. Input Data 

The SWAT input data that was used in this study to model the water balance was a 

Digital Elevation Model (DEM), land use map, climatic data, and a soil map with 

corresponding soil parameters. A full list of the input data can be seen in Table 4.  

Table 4: Input data used for the SWAT model. 

Data type Data description Source 

DEM 90 x 90 m, 

HydroSHEDS Core 

Layers (version 1) 

(Lehner et al. 2008) https://www.hydrosheds.org/ 

 

Land Use 

 

10 x 10 m, ESA 

WorldCover 10 m 2020 

V100. 

 

(Zanaga et al. 2021) 

 

 

 

  

 

https://www.hydrosheds.org/
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Data type Data description Source 

Climate Climatic stations - daily 

precipitation and 

temperature (2010-2020) 

Department of Meteorology Sri Lanka 

https://www.meteo.gov.lk/index.php?option=com_

content&view=article&id=100&Itemid=321&lang

=en 

Vegetation Rice parameters: harvest 

index, maximum rooting 

depth. Other crop and 

vegetation parameters. 

Measured harvest index and maximum rooting 

depth. Crop and vegetation parameters from the 

SWAT land cover/plant growth database (Arnold 

et al. 2012). 

 

 

Digital Elevation Model and Stream Network 

To delineate the watershed the watershed delineation tool in ArcSWAT was used 

with the hydrologically conditioned DEM from HydroSHEDS (Lehner et al. 2008). 

The DEM was clipped to Malwathu Oya river basin by using a mask in the DEM 

setup in ArcSWAT and the streams were created based on the DEM and flow 

direction and accumulation. An outlet was manually added where the discharge 

station was located and the outlet for the whole river basin was selected, thereafter 

the watershed was delineated. A total of 26 subbasins were created based on the 

area of flow direction and accumulation which was 6100 Ha. A map of the DEM 

and the created stream network is shown in Figure 5. 

 

https://www.meteo.gov.lk/index.php?option=com_content&view=article&id=100&Itemid=321&lang=en
https://www.meteo.gov.lk/index.php?option=com_content&view=article&id=100&Itemid=321&lang=en
https://www.meteo.gov.lk/index.php?option=com_content&view=article&id=100&Itemid=321&lang=en
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Figure 5: DEM over Malwathu Oya river basin with the stream network created in ArcSWAT 

(Lehner et al. 2008). 

 

Land Use 

The land use map used in this SWAT model was based on ESA WorldCover 10 m 

2020 V100 (Zanaga et al. 2021). This map was reclassified manually in QGIS for 

agricultural lands with the help of Google Satellite imagery (Google, ©2022 

CNES/Airbus, Landsat/Copernicus, Maxar Technologies) to improve the model 

performance. The reclassification was done by using the Google satellite imagery 

as a background of the land use map to detect agricultural lands that were not 

classified. The reclassification was done by using the Serval tool Plugin in QGIS 

by reclassifying the raster pixel values through manual selection and then assigning 

it to the agricultural land class. The ESA WorldCover 10 m agricultural land 

classification was thus improved through this process. 

 

When finished, the land use map was classified according to the SWAT land use 

classes in ArcSWAT. The land use map can be seen in Figure 6 and in Table 5 the 

description of the land use classes and their area distribution are shown. A major 

part of the deciduous forest is located in the downstream area in the northwest as a 

part of the Wilpattu National Park.  
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Figure 6: Land use map used in SWAT (© ESA WorldCover project 2020 / Contains modified 

Copernicus Sentinel data (2020) processed by ESA WorldCover consortium). 

Table 5: Land use classification and description. 

Land use classification SWAT land use class Area (km2) Area of the 

basin (%) 

Forest-Deciduous FRSD 1,943 63.7 

Brush land RNGB 6.95 0.23 

Range-Grasses RNGE 600 19.7 

Agricultural AGRL 444 14.5 

Urban URBN 6.36 0.21 

Barren BARR 10.6 0.35 

Water WATR 35.5 1.16 

Wetlands-Forested WETF 5.53 0.18 

 

An example picture of agricultural land (rice field) is shown in Figure 7. 
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Figure 7: Picture of a rice field at the Rajarata University, Anuradhapura. 

 

Climate 

The climatic data that was used was from six rainfall gauges measuring 

precipitation and four temperature gauges measuring maximum and minimum 

temperature. Their spatial distribution is shown in Figure 2. Both data sets were 

daily from 2010-2020 and was provided by the Department of Meteorology in Sri 

Lanka. There were less than 10% of missing data and where data was missing it 

was generated by using a linear regression equation by correlating the data with 

nearby stations (Longman et al. 2020), this was done by the Department of 

Meteorology in Sri Lanka. Table 6 shows the coordinates and names of the climatic 

stations and the type of data. 

Table 6: Climate data and its sources used in the SWAT model. 

Climate station Coordinates (lat., long.) Data from 2010-2020 

(daily) 

Mahailluppallama 8.11, 80.46 Precipitation 

Maradankadawala 8.13, 80.57 Precipitation 

Medawachchiya 8.54, 80.49 Precipitation 

Mihintale 8.37, 80.51 Precipitation 

Murunkan 8.83, 80.05 Precipitation 

Vavuniya 8.77, 80.48 Precipitation 

Mannar 8.98, 79.92 Temperature 
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Vavuniya 8.75, 80.50 Temperature 

Mahailluppallama 8.12, 80.47 Temperature 

Anuradhapura 8.35, 80.38 Temperature 

 

 

Soil 

The soil map that was used was from the Natural Resources Management Centre of 

the Department of Agriculture (NRMC), Sri Lanka (https://doa.gov.lk/nrmc/). The 

original scale was 1:500,000 but the map has been digitized and resampled into 100 

x 100 m pixels. Soil parameters for the first two layers of each soil class were 

extracted from the Harmonized World Soil Database (HWSD), 

(https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-

world-soil-database-v12/en/)  and were inserted in the SWAT2012 database in the 

usersoil tab. The mean values of the measured soil parameters from the field (see 

Table 2) were inserted in the first soil layer for the soil type in which they were 

measured (Lc-6664-1). The soil parameters for the two layers are described in Table 

7 and the values used in the SWAT model are shown in Table 8. 

 

Table 7: Description of soil parameters used in SWAT and their units (Arnold et al. 2012). 

SWAT name Description Unit 

SOL_ZMX Maximum rooting depth of soil 

profile 

mm 

ANION_EXCL Fraction of porosity from which 

anions are excluded 

- 

SOL_CRK Potential or maximum crack volume 

as a fraction of the total volume 

- 

SOL_Z(layer#) Depth from soil surface to bottom of 

layer 

mm 

SOL_BD(layer#) Bulk density g cm-3 

SOL_AWC(layer#) Available water capacity mm H2O/mm soil 

SOL_K(layer#) Saturated hydraulic conductivity mm hr-1 

SOL_CBN(layer#) Organic carbon content % soil weight 

CLAY(layer#) Clay content % soil weight 

https://doa.gov.lk/nrmc/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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SILT(layer#) Silt content % soil weight 

SAND(layer#) Sand content % soil weight 

ROCK(layer#) Rock fragment content % total weight 

SOL_ALB(layer#) Moist soil albedo - 

USLE_K(layer#) USLE soil erodibility (K) factor 0.013(metric ton 

m2h)/(m3-metric ton cm) 

 

 

Table 8: The soil parameters for the two soil layers of each soil class that were used in the SWAT 

model. The soil parameters were extracted from the Harmonized World Soil Database (HWSD). The 

mean values of the measured soil parameters (Table 2) were inserted in the Lc-6664-1 soil class. 

                Soil class 

 

Parameter 

Fr-3699-1 Lc-3775-1 Zg-3888-1 Lc-6664-1 

SOL_ZMX 1000 1000 1000 1000 

ANION_EXCL 0.5 0.5 0.5 0.5 

SOL_CRK 0.5 0.5 0.5 0.5 

SOL_Z1 300 300 300 300 

SOL_BD1 1.38 1.34 1.40 1.50 

SOL_AWC1 0.11 0.14 0.16 0.061 

SOL_K1 25.54 13.24 8.75 104 

SOL_CBN1 0.68 0.86 0.42 0.86 

CLAY1 26 24 21 9.2 

SILT1 12 29 43 7.0 

SAND1 62 47 36 83.8 

ROCK1 3 9 6 9 

SOL_ALB1 0.22 0.22 0.22 0.22 

USLE_K1 0.12 0.13 0.16 0.13 

SOL_Z2 1000 1000 1000 1000 

SOL_BD2 1.36 1.35 1.35 1.35 

SOL_AWC2 0.07 0.14 0.14 0.14 

SOL_K2 149.24 7.67 7.67 7.67 

SOL_CBN2 0.03 0.03 0.03 0.03 

CLAY2 8 28 28 28 

SILT2 1 29 29 29 

SAND2 91 43 43 43 

ROCK2 30 1 1 1 

SOL_ALB2 0.26 0.22 0.22 0.22 

USLE_K2 0.05 0.16 0.16 0.16 
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Vegetation 

To describe the rice, parameters from the SWAT land use/crop data base (Arnold 

et al. 2012) and the measured harvest index and maximum rooting depth were 

used. For a full list of the rice parameters used in the model, see Appendix B. The 

rice was also modelled according to the Maha and Yala season every year by 

changing the management practices (see section 3.5). The other vegetation classes 

were not altered due to time constraint and the default parameters from the SWAT 

land use/crop data base were used. 

3.5. SWAT Model Setup 

To set up the SWAT model with all the input data the ArcSWAT toolbar in ArcGIS 

was used. The steps of setting up the model in ArcSWAT follows below. 

 

Watershed Delineation 

Here the watershed was delineated using the DEM as described in section 3.4.1.  

 

HRU Analysis 

In SWAT, Hydrologic Response Units or HRUs are land areas within each subbasin 

that consists of unique combinations of land use, soil and slope classes (Neitsch et 

al. 2011). The HRUs add accuracy to the simulation by improving the prediction of 

loadings from the subbasins, and as a general rule, a subbasin should consist of 1-

10 HRUs (Arnold et al. 2012). 

 

To begin setting up the HRUs the Land use/Soils/Slope Definition tab under HRU 

analysis was defined. In the land use tab, the land use map was chosen, and it was 

assigned the SWAT land use classes shown in Table 5. To represent the paddy 

fields, the land use class of the agricultural lands, AGRL, was changed to the SWAT 

land use class RICE. The RICE land use class contains crop parameters on rice from 

the SWAT plant growth database (Arnold et al. 2012). Since about 15 % of the land 

use in Malwathu Oya is paddy fields (Muthuwatta et al. 2017) and the area of 

agricultural lands, AGRL, in Table 5 also makes up about 15 % of the land use 

(14.5 %), all agricultural lands were assumed to be paddy. Next, in the soil tab, the 

soil map was selected, and the soil classes were added. Lastly the slope classes for 

the river basin were defined. In this case 4 slope classes were created from 0-2 %, 

2-3 %, 3-5 %, and >5 %. This was based on the slope data in the basin with mean 

slope of 1.86 %, minimum slope of 0 %, maximum 91.1 % and standard deviation 

3.35 %. When this was finished, an HRU feature class and an overlay report were 

created where the distribution of land use, soil, and slope classes in the basin were 

described. 
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When the land use, soils, and slope had been defined the definition of the HRUs 

was determined. Multiple HRUs were created based on a land use threshold of 10 

% (land use over subbasin area), 15 % soil class over land use area and 10 % slope 

class over soil area. The thresholds were chosen to create around 10 or less HRUs 

per subbasin. In total 207 HRUs were created in the 26 subbasins. 

 

Write Input Tables 

Here the precipitation and temperature files were selected. Afterwards, all the 

SWAT input tables were created. 

 

Edit SWAT Input 

Here the parameters of RICE were edited in the SWAT land cover/plant growth 

database by changing the harvest index to the measured value of 0.324 and the 

maximum root depth to the measured value of 0.11 m. Furthermore, the 

management operations were edited for all HRUs containing the RICE land cover. 

This was done by applying the management operations “Planting/beginning of 

growing season” and “Harvest and kill” for the Maha season (September – March) 

and Yala season (May – August) for all 11 years that were simulated. 

 

The auto irrigation and auto fertilization operations were also added for all RICE 

HRUs in the management operations. For the auto irrigation it was chosen to let the 

irrigation be triggered by the plant water demand. This was controlled by the water 

stress threshold which is the ratio of actual to potential plant transpiration and it is 

normally set between 0.90-0.95 (Arnold et al. 2012), in this study 0.95 was used. 

Thus, when the plant is water stressed the model adds water until the soil reaches 

field capacity. Other parameters related to the auto irrigation were; the irrigation 

efficiency, set to 57 % (based on calculations from (Brouwer et al. 1989)), the 

amount of water applied each time the irrigation is triggered, set to 75 mm 

(Department of Agriculture Sri Lanka 2021), and the source of irrigation which was 

set to an unlimited water source outside the watershed. 

 

The auto fertilization used elemental nitrogen which was triggered by a nitrogen 

stress threshold, in this study set to 0.95 (Arnold et al. 2012). The other parameters 

used the default auto fertilization values. 

 

SWAT Simulation 

The SWAT model was run on a daily timestep for 11 years between 2010-2020 

with a 2-year warm-up period during which no output results were printed. The 

output was selected to be printed on a monthly time step. After this a sensitivity 
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analysis and a calibration based on streamflow was performed which are described 

in the next two subchapters. 

3.6. Sensitivity Analysis 

A global sensitivity analysis was performed using the SWAT-CUP program 

(version 5.1.6.2). SWAT-CUP is a semi-automatic calibration program developed 

for SWAT (Abbaspour 2015) and provides several methods for calibration of 

SWAT models as well as sensitivity analysis. 

 

The global sensitivity analysis estimates the sensitivity of each parameter from the 

average change in the objective function that results from changes in each 

parameter, while all other parameters are changing (Abbaspour 2015). The t-stat 

and p-value are the indicators which determine the degree of sensitivity. The t-stat 

value is the coefficient of the parameter divided by its standard error and the larger 

the absolute t-stat value, the more sensitive is the parameter. The p-value 

determines the significance of the sensitivity by testing the null hypothesis that the 

coefficient of the parameter is equal to zero - meaning it has no effect, and a p-value 

< 0.05 is generally accepted as the point where one can reject the null hypothesis, 

thus regarding the parameter as sensitive (Abbaspour 2015). 

 

In this study the SWAT model was calibrated against observed discharge data and 

the sensitivity analysis was performed to eliminate the less sensitive parameters 

from the calibration process. The parameters that were chosen for this study were 

based on previous studies that considered calibration against discharge data 

(Abbaspour et al. 2007; J. G. Arnold et al. 2012; Iresh et al. 2021). The chosen 

parameters and their initial value ranges are presented in Appendix C. The 

sensitivity analysis was performed using the Sequential Uncertainty Fitting (SUFI-

2) (described more in section 3.7) method by running one iteration with 500 

simulations and then eliminating the parameters with a p-value > 0.10 before 

continuing the calibration with further iterations. A p-value > 0.10 was chosen to 

include more parameters in the calibration. 

3.7. SWAT Calibration 

The SWAT model was calibrated with monthly average observed discharge data 

provided by the Irrigation Department in Sri Lanka from the station shown in Figure 

2 which is in Thanthirimale (Lat. 8.59, Long. 80.28). The model was calibrated 

between January 2012 – September 2020 (excluding the two warm up years 2010 

and 2011 in SWAT). The average discharge data for three months were missing. 
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The observed discharge data that was used in the calibration is shown in Appendix 

C.  

 

The calibration was performed with SWAT-CUP (version 5.1.6.2), and in this study 

the Sequential Uncertainty Fitting (SUFI-2) method was used. The SUFI-2 

algorithm is calibrating the model based on parameters and parameter value ranges 

chosen by the user with the goal of finding the best range for each parameter 

(Abbaspour et al. 2004). The best ranges of the simulation are evaluated by the p-

factor and r-factor. The p-factor represents the amount of measured data that is 

covered by the 95 Percent Prediction Uncertainty (95PPU) and the r-factor 

represents the thickness of the 95PPU i.e., the average distance between the  97.5 

and the 2.5 percentiles (Abbaspour et al. 2007). The p-factor ranges from 0 to 1, 

where 1 means that 100% of the measured data is bracketed by the 95PPU. The r-

factor is desired to be less than 1 and an r-factor of 0 and a p-factor of 1 means that 

the simulation exactly matches the measured data (Abbaspour et al. 2007). 

 

Further, the performance of the model was evaluated by the coefficient of 

determination (R2), Nash-Sutcliffe efficiency (NSE), and percent of bias (PBIAS) 

shown in equations 5, 6, 7. The chosen objective function of the model was NSE. 

 

 𝑅2 =  
[∑ (𝑄𝑚,𝑖 −  𝑄𝑚)(𝑄𝑠,𝑖 −  𝑄𝑠) 𝑛

𝑖=0 ]
2

∑ (𝑄𝑚,𝑖 − 𝑄𝑚)2 ∑ (𝑄𝑠,𝑖 − 𝑄𝑠)2𝑛
𝑖=0

𝑛
𝑖=0

 (5) 

 

 𝑁𝑆𝐸 = 1 − 
∑ (𝑄𝑚,𝑖 −  𝑄𝑠)2𝑛

𝑖=0

∑ (𝑄𝑚,𝑖 −  𝑄𝑚)2𝑛
𝑖=0

 (6) 

 

 𝑃𝐵𝐼𝐴𝑆 = 100 ×  
∑ (𝑄𝑚 −  𝑄𝑠)𝑖

𝑛
𝑖=0

∑ 𝑄𝑚,𝑖
𝑛
𝑖=0

 (7) 

 

In above equations 𝑄 represents the discharge, m stands for measured value, s for 

simulated value, 𝑄𝑚 and 𝑄𝑠 are the means of the measured and simulated data, and 

n is the number of observations. The calibration can be seen as satisfactory if R2 > 

0.5, NSE > 0.5, and PBIAS < ±25 (Moriasi et al. 2007). 

 

The calibration was run with 500 simulations in each iteration for a total of 3 

iterations. The parameter values were changed either by replacing the existing value 

with a given value or by multiplying the existing value by (1 + a given value). The 

parameters that were calibrated can be seen in Appendix C. After each iteration the 

new parameter ranges that were provided by SWAT-CUP were checked so that they 

were in physically meaningful ranges.  

 



24 

 

When the calibration was finished, the parameters from the best simulation in the 

last iteration were exported and replaced the previous parameter values in the 

SWAT model. 

3.8. Water Balance Components 

The water balance in SWAT is based on Equation 8 (Neitsch et al. 2011): 

 

 𝑆𝑊𝑡 = 𝑆𝑊0 +  ∑(𝑅𝑑𝑎𝑦 −  𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑖=1

 (8) 

 

where SWt denotes the final soil water content (mm), SW0 denotes the initial soil 

water content (mm), t is the time in days, Rday is the precipitation on day i (mm), 

Qsurf is the surface runoff on day i (mm), Ea is the actual evapotranspiration (mm), 

wseep is the amount of water entering the vadose zone (mm), and Qgw is the return 

flow (mm). 

 

The water balance for the simulated period between 2012-2020 was analysed by 

assessing the average annual basin values which were derived from the SWAT 

output.std file. 

3.9. Comparison of SWAT ETa with WaPOR ETa 

To compare the SWAT ETa with WaPOR ETa the WaPOR ETa data had to be 

prepared. First, level II (100 m resolution) monthly ETa WaPOR data over Sri 

Lanka was downloaded from the WaPOR portal1 for the period 2015-2020. The 

SWAT model was calibrated and run for the years 2012-2020 but the first year of 

available WaPOR data is from 2015. Next the WaPOR data was clipped to the 

SWAT modelled area of the Malwathu Oya river basin, and the mean value and 

standard deviation of the monthly rasters were calculated. 

 

The monthly mean values and standard deviations from WaPOR were aggregated 

to a seasonal value for the Maha and Yala seasons, September – March and May – 

August, respectively. The same seasonal aggregation was done with the SWAT 

monthly calculated ETa values for the river basin and the two datasets were 

compared. SWAT ETa was thus represented as a point value for the whole river 

basin and WaPOR as a mean value of all the pixels in the river basin. The average 

 
1 https://wapor.apps.fao.org/catalog/WAPOR_2/2/L2_AETI_M 

https://wapor.apps.fao.org/catalog/WAPOR_2/2/L2_AETI_M
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precipitation for the Maha and Yala seasons based on the weather stations in the 

river basin and the ETp calculated from the SWAT model with Hargreaves method 

were also compared with the SWAT and WaPOR ETa. 

 

Comparison Based on Land Use Class 

To perform a comparison based on the land use classes the SWAT annual ETa 

output from all the HRUs (207) was extracted from the HRU output file. The HRUs 

containing the same land use class were grouped together to obtain the ETa data 

from 2015-2020 based on the different land use classes. In order to compare the 

annual HRU ETa with WaPOR ETa, WaPOR annual ETa (100 m resolution) from 

2015-2020 was first downloaded from the WaPOR portal. Next, to represent 

WaPOR ETa with the same amount of datapoints as the HRUs, the WaPOR data 

cells were aggregated with the Aggregate Tool (Spatial Analyst) in ArcGIS. The 

aggregation technique that was chosen was “mean”, thus, the mean value of the 

input cells was used for the new aggregated cell. The assigned cell factor was 39, 

thereby increasing the original cell size by a factor of 39. This resulted in an 

aggregated raster with 212 cells. This was the closest number to the 207 HRUs that 

could be achieved. Thereafter, the Int Tool (Spatial Analyst) in ArcGIS was used 

to convert the raster values to integers in order to be able to export the raster values 

from the attribute tables. Lastly, the ETa of the HRUs with the same land use class 

were compared to the 212 WaPOR ETa cells by creating boxplots with the annual 

ETa data from 2015-2020. 
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4.1. Sensitivity Analysis 

The results of the global sensitivity analysis are shown in Table 9 where the 

parameters are ranked from highest to lowest sensitivity. The runoff curve number 

CN2 showed the highest sensitivity followed by SOL_AWC, the soil available 

water capacity in layer 1, and ESCO, the soil evaporation compensation factor. 

Considering the t-stat value CN2 was notably more sensitive than SOL_AWC and 

ESCO with a t-stat value of -25.114 compared to 5.375 and -5.088, respectively. 

The least sensitive parameter was ALPHA_BF, the baseflow alpha factor, followed 

by SOL_K, the soil saturated hydraulic conductivity in layer 1, and CH_N2, 

Manning’s “n” value for the main channel. Only the first 7 parameters were used 

for the calibration since they had a p-value < 0.10. 

Input parameter t-stat P-value Ranking 

r__CN2.mgt -25.114 0.000 1 

r__SOL_AWC(1).sol 5.375 0.000 2 

v__ESCO.hru -5.088 0.000 3 

v__ALPHA_BNK.rte -4.959 0.000 4 

v__GW_REVAP.gw 3.000 0.003 5 

v__CH_K2.rte 2.097 0.036 6 

r__HRU_SLP.hru 1.635 0.098 7 

v__GWQMN.gw 1.543 0.124 8 

v__REVAPMN.gw -1.488 0.137 9 

v__SURLAG.bsn 1.371 0.171 10 

r__SLSUBBSN.hru 1.250 0.212 11 

v__GW_DELAY.gw -1.195 0.233 12 

r__EPCO.bsn 0.819 0.413 13 

r__SOL_BD.sol 0.794 0.428 14 

r__OV_N.hru -0.516 0.606 15 

v__CH_N2.rte 0.383 0.702 16 

r__SOL_K(1).sol -0.369 0.712 17 

v__ALPHA_BF.gw -0.184 0.854 18 

4. Results 

Table 9: The calibration parameters ordered after highest to lowest global sensitivity. See Appendix 

C, Table C2 for a description of the parameters.  
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4.2. SWAT Calibration 

The calibrated parameters, their descriptions, and their final values/minimum and 

maximum ranges after the last iteration are shown in Table 10. The value range for 

CN2 was between 71 – 85 which according to the land use and hydrologic soil 

groups are reasonable values (Soil Conservation Service Engineering Division 

1986). The GW_REVAP parameter which in SWAT refers to water moving from 

the shallow aquifer to the root zone had a value of 0.11, the value should be between 

0.02 – 0.2 (Arnold et al. 2012), thus indicating a medium rate of transfer from the 

shallow aquifer to the root zone. The SOL_AWC in layer 1 had a value range from 

0.12 – 0.31 (mm H2O/mm soil). These values are very high compared to a soil study 

in the dry zone by Mapa & Pathmarajah (1995) where values in the range of 0.083 

– 0.12 (mm H2O/mm soil) were found. The ESCO parameter had a value of 0.17 

where the possible range is from 0.01 – 1, a low value indicates that the model can 

extract water from deeper soil levels to meet the soil evaporative demand. The 

CH_K2 had a value of 67 (mm/hr) indicating a high loss rate of water (Arnold et 

al. 2012). The ALPHA_BNK value of 0.19 means that there is a steep recession 

curve for bank flow (Arnold et al. 2012). Lastly the HRU_SLP had a range of 0.001 

– 0.252 (m/m) which is reasonable since the elevation in the river basin mostly is 

flat with a few hills. 

Table 10: SWAT parameters that were calibrated and their final value / ranges after calibration in 

SWAT-CUP. The “r” before the parameter means a relative change was applied by multiplying the 

existing value by (1 + calibrated value). The “v” before the parameter means that the existing value 

was replaced by the calibrated value. For the calibrated values of the parameters with a relative 

change see Appendix C. 

Input parameter Description (Arnold et al. 2012) Final value / min and 
max range 

r__CN2.mgt Initial Soil Conservation Service (SCS) runoff curve 
number for moisture condition II 

71 – 85 

v__GW_REVAP.gw Groundwater “revap” coefficient 0.11 

r__SOL_AWC(1).sol Available water capacity of the soil layer (1) (mm 
H2O/mm soil) 

0.12 – 0.31 

v__ESCO.hru Soil evaporation compensation factor 0.17 

v__CH_K2.rte Effective hydraulic conductivity in main channel alluvium 
(mm/hr) 

67 

v__ALPHA_BNK.rte Baseflow alpha factor for bank storage (days) 0.19 

r__HRU_SLP.hru Average slope steepness (m/m) 0.001 – 0.252 
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The 95PPU created from the last iteration is shown in Figure 8. The best simulation 

matches the observed discharge well for the most part. The simulated baseflow is 

generally slightly higher than the observed and the small rainfall peaks are 

exaggerated in the simulation. For some of the bigger discharge peaks the simulated 

discharge is under predicting, especially at the biggest peak in November 2015. In 

October 2012 a double peak is shown for the simulation where the first peak is 

likely caused by a local rainfall event not affecting the streamflow much. The 

simulated peak at the end of 2014/beginning of 2015 is showing a long lag time and 

for the peak at the end of 2018/beginning of 2019 the simulated curve has a shorter 

lag time than the observed peak. 

 

Figure 8: The 95PPU graph with the best simulation from the last iteration. 

 

According to the evaluation coefficients used in the calibration the results are 

satisfactory (Moriasi et al. 2007) with an R2 value of 0.72, NSE 0.69, and PBIAS -

10.4. The p-factor from the 95PPU was 0.66 and the r-factor 0.68. A summary of 

the calibration statistics is presented in Table 11. 

p-factor r-factor R2 NSE PBIAS 

0.66 0.68 0.72 0.69 -10.4 

 

Table 11: Summary statistics from the calibration. 
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4.3. Water Balance Components 

The water balance results from the SWAT simulation show that the average annual 

precipitation between 2012-2020 was 1361 mm and the average ETa was 922 mm, 

or 68 % of the precipitation. Moreover, the baseflow (shallow aquifer flow + lateral 

soil flow) was 18 % of the total flow and the surface runoff was 19 % of the 

precipitation. The total water yield was 338 mm, i.e., the sum of surface runoff, 

lateral soil flow, and shallow and deep aquifer flow. A visual representation of the 

water balance in the Malwathu Oya river basin is shown in Figure 9. Since the water 

balance equation in SWAT includes the initial soil water content the sum of the 

evapotranspiration, water yield, and aquifer recharge exceeds the precipitation. 

 

 

Figure 9: Visual representation (not to scale) of the water balance in the Malwathu Oya river basin 

with the main water balance components showing the annual average values between 2012-2020. 

 

A complete list of the average annual water balance components between 2012-

2020 is shown in Table 12. 
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Table 12: The SWAT average annual water balance values for the Malwathu Oya river basin 

between 2012-2020. 

Component Average annual 

value (mm/year) 

Standard deviation (mm/year) 

Precipitation 1361 330 

Surface runoff 264 147 

Lateral soil flow 7 1.1 

Shallow aquifer flow 54 41 

Deep aquifer flow 13 8 

Revap (shallow aquifer to 

soil/plants) 

177 17 

Deep aquifer recharge 13 7 

Total aquifer recharge 265 200 

Total water yield 338 143 

ETa 922 108 

 

4.4. Comparison of SWAT ETa with WaPOR ETa 

The aggregated monthly values of SWAT ETa and WaPOR ETa for the Maha and 

Yala seasons (September-March and May-August, respectively) from 2015-2020 in 

the Malwathu Oya river basin and the average precipitation are shown in Figure 10. 

The overall conclusion from the graph is that SWAT ETa shows much lower values 

compared to the WaPOR ETa. The difference is biggest in the Yala seasons, while 

SWAT ETa is the same as WaPOR in Maha 15/16. The last three Maha seasons 

show an underprediction by SWAT by around 100 mm/season and the most similar 

Yala season is Yala 2020 with about a 100 mm lower SWAT value. Based on the 

precipitation data SWAT shows very low ETa values during the Yala season when 

the precipitation is low and values closer to WaPOR during the Maha season when 

the precipitation is higher. The WaPOR data shows a similar pattern between the 

seasons although with higher ETa values that exceed the precipitation on several 

seasons. 
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Figure 10: SWAT ETa, WaPOR ETa and precipitation for the Maha and Yala seasons from 2015-

2020. The WaPOR ETa and precipitation are shown with standard deviation. The precipitation 

represents the average precipitation from the climatic stations.  

 

The SWAT and WaPOR ETa were also compared with ETp Hargreaves during the 

same period and seasons, this is shown in Figure 11. The WaPOR ETa is showing 

similar values to the ETp in the Yala season with approximately 10 – 100 

mm/season less, whereas the differences are bigger in the Maha season. 

 

 

Figure 11: SWAT and WaPOR ETa compared to ETp Hargreaves for the Maha and Yala seasons 

between 2015-2020, the WaPOR ETa is shown with standard deviation. 
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The total sums for the Maha and Yala seasons between 2015-2020 for the 

parameters presented in Figures 10 and 11 are listed in Table 13. The total 

difference in ETa between SWAT and WaPOR is 628 mm for the Maha seasons 

and 1522 mm for the Yala seasons. For the Maha seasons SWAT ETa is 83 % of 

WaPOR ETa and for the Yala seasons SWAT ETa is 51 % of WaPOR ETa, and in 

total between 2015-2020 SWAT ETa is 68 % of WaPOR ETa. The ratio between 

ETa and precipitation is 0.65 and 0.85 for SWAT, and 0.78 and 1.68 for WaPOR 

for the Maha and Yala seasons, respectively, and the ratio of the total sum is 0.70 

for SWAT and 1.04 for WaPOR. The high ratio of WaPOR ETa to precipitation in 

the Yala seasons could be explained by a high amount of irrigation, more so than in 

the Maha seasons, which also is shown when comparing the seasons to ETp in 

Figure 11.  

 

The ratio between ETa and ETp Hargreaves is 0.66 and 0.45 for SWAT for the Maha 

and Yala seasons respectively, and 0.79 and 0.90 for WaPOR. The ratio of the total 

ETa and ETp Hargreaves between 2015-2020 is 0.57 for SWAT and 0.84 for 

WaPOR. 

Table 13: Summation of the SWAT ETa, WaPOR ETa, ETp Hargreaves, and precipitation for the 

Maha and Yala seasons between 2015-2020 and the total sum. 

Year  

(2015-2020) 

SWAT ETa  

(mm) 

WaPOR ETa 

(mm) 

ETp Hargreaves 

(mm) 

Precipitation 

(mm) 

Sum Maha 2982  3610 4551 4610 

Sum Yala 1565 3087 3445 1841 

Total sum 4547 6697 7996 6451 

 

The ETa validation based on land use class in Figure 12 presents the SWAT HRUs 

with the same land use class and the aggregated WaPOR cell values per year. The 

distribution of the 207 HRUs per land use class was the following: 86 FRSD 

(deciduous forest), 48 RICE (rice), 72 RNGE (range grass), and 1 WATR (water).  
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Figure 12: Annual comparison of the ETa from HRUs with the same land use class and WaPOR ETa 

pixel values in the Malwathu Oya river basin. FRSD, RICE, RNGE, and WATR denote the SWAT 

land use classes and represent deciduous forest, rice, range grasses, and water bodies, respectively. 

 

The FRSD and RNGE HRUs are displaying similar patterns compared to WaPOR, 

and for all years except 2015 there is not much correlation between the data sets. 

The RICE HRUs that were auto irrigated show a good correlation with WaPOR in 

2018 where the boxes match well, in 2015 SWAT’s box is partly matching 

WaPOR’s with the upper quartile being over WaPOR’s, and in 2020 SWAT partly 
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matches WaPOR’s box in the lower quartile. Except those three years SWAT is 

underpredicting ETa compared to WaPOR, however with a smaller difference for 

the RICE HRUs compared to FRSD and RNGE. The WATR HRU displayed a 

better correlation with WaPOR with the ETa values being within the lower and 

upper quartile for the years 2016-2019 indicating that WaPOR’s ETa correlates well 

with SWAT for water bodies i.e., unlimited water supply. 

 

The low ETa for the FRSD and RNGE could partially be explained by a dormancy 

period for 10 days between day 352-361 that was simulated by SWAT every year. 

This happens automatically in the model when a certain day length threshold is 

reached. During this dormancy period the plants lose 0.3 of their biomasses by 

default. 

 

The mean annual ETa for WaPOR, SWAT, and the different HRUs (Table 14) 

between 2015-2020 is showing a difference between WaPOR and SWAT of 438 

mm and the difference of WaPOR and RICE was 176 mm which was the land use 

HRU that was most equal to WaPOR except the WATR HRUs. 

Table 14: Mean annual ETa for the years 2015-2020 for SWAT, WaPOR, and the different HRUs. 

Level Basin Basin HRU HRU HRU HRU 

Data WaPOR SWAT FRSD RNGE RICE WATR 

Mean ETa (mm 

y-1) 

1368 930 925 897 1192 1466 

Standard 

deviation (mm 

y-1) 

130 122 137 131 85 58 

 

From the SWAT output.hru file the average water stress days per month and season 

were analysed (Table 15). This shows that the FRSD HRUs were the most water 

stressed with 7.5 water stress day/month in the Maha season and 14.8 water stress 

days/month in the Yala season. For the RNGE HRUs the water stress was less with 

3.6 water stress days/month for both seasons, and for the RICE HRUs the water 

stress days/month were 0.39 and 0.45 for Maha and Yala respectively, thus showing 

that the auto irrigation worked. 
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Table 15: Average water stress days per month for the Maha and Yala seasons for the FRSD, RNGE 

and RICE HRUs. 

HRU FRSD RNGE RICE 

Maha (water stress 

days/month) 
7.5 3.6 0.39 

Maha STD (water 

stress days/month) 
1.0 0.6 0.12 

Yala (water stress 

days/month) 14.8 3.6 0.45 

Yala STD (water 

stress days/month) 
4.1 3.5 0.09 
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5.1. Sensitivity Analysis and Calibration 

The three parameters that were the most sensitive to streamflow calibration were 

the curve number for moisture condition II (CN2), the soil available water capacity 

(SOL_AWC), and the soil evaporation compensation factor (ESCO). CN2 

estimates the runoff based on antecedent soil water conditions, land use, and soil 

permeability, thus estimating the amount of runoff water that eventually will reach 

the stream, so it is reasonable that it is the most sensitive parameter. The 

SOL_AWC is determining how much water the soil is holding, therefore the runoff 

is dependent on this parameter since that will determine the amount of water that 

can infiltrate into the soil or become runoff. The ESCO parameter determines how 

much of the soil evaporative demand that can be extracted from deeper soil layers 

and is therefore not as directly related to streamflow creating processes. It is 

however also affecting the soil water content throughout the soil profiles which in 

turn reflects how much water turns to runoff, lateral flow to the stream, or 

groundwater contributing to stream flow. In comparison with other studies that have 

calibrated SWAT against streamflow with SUFI-2 in both similar climates and 

different, CN2 is most of the time the top-3 most sensitive parameter (Narsimlu et 

al. 2015; Khalid et al. 2016; Mehan et al. 2017; Mengistu et al. 2019; Odusanya et 

al. 2021), SOL_AWC was the most sensitive parameter in (Mehan et al. 2017) and 

ranked as the 5th most sensitive parameter in (Khalid et al. 2016). When ESCO was 

included in the above-mentioned studies it ranked 5th and 7th. The CN2 parameter 

can thus be regarded as a consistently sensitive parameter for streamflow. 

 

However, the parameters that are sensitive to streamflow are not necessarily the 

same parameters that are sensitive to ETa. In the studies by Sirisena et al. (2020) 

and Odusanya et al. (2021) a SWAT model was calibrated in SWAT-CUP using 

either streamflow data or RS derived ETa data and the results showed that the 

sensitivity ranking of the parameters differed between the two methods. In 

Odusanya et al. (2021) the parameters EPCO (plant uptake compensation factor), 

CANMX (maximum canopy storage), and SOL_BD (soil bulk density) were the 

three most sensitive for ETa and CN2 and ESCO were ranked as number 4 and 5. 

Sirisena et al. (2020) found that SOL_BD, SOL_Z (depth from soil surface to 

bottom of layer), ESCO, EPCO, and SOL_AWC were the most sensitive for ETa. 

This shows the difference between the parameter sensitivities if one calibrates 

against streamflow or ETa. Therefore, an improvement would be to measure the 

most sensitive parameters for ETa in the field. 

 

5. Discussion 
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The calibrated value that was most notable was the SOL_AWC that was very high 

compared to Mapa & Pathmarajah (1995) study in the dry zone. Even though this 

value gives a good, simulated result for the streamflow calibration it does not mean 

that it is reflecting the real conditions. The goal with the calibration algorithm is to 

find the best simulation to maximize the objective function, in this case NSE, the 

actual calibrated values might therefore not necessarily reflect the real conditions, 

as long as the objective function is maximized the calibration has found the best 

solution. The second or third best simulation could also be achieving a satisfactory 

result not significantly worse than the best simulation. These could have a different 

combination of parameter values but still achieve a similar result which is worth to 

keep in mind. 

 

The evaluation coefficients for the calibration were all satisfactory (Moriasi et al. 

2007) with R2 0.72, NSE 0.69, and PBIAS -10.4. The PBIAS value is indicating 

that the simulation has an overestimation bias which can be seen from the 

hydrograph (Figure 8) where the baseflow and the smaller peaks during baseflow 

are overestimated. An increased water uptake from the vegetation could improve 

this. From the bigger rainfall events two peaks are skewed which probably is due 

to the rainfall data, trying two adjust only these two would affect all the other peaks 

which are not showing the same behaviour. The biggest peak in the middle of the 

simulation period is where a lot of discharge is not captured. The simulated value 

is about half of the observed, improving this peak would increase the NSE notably. 

 

The p-factor and r-factor which are the evaluation coefficients of the 95PPU had 

the values of 0.66 and 0.68, respectively. The p-factor could be increased by a better 

estimation of the baseflow and a better capture of the biggest discharge peak. By 

doing a more manual change of the parameter ranges in the calibration and not 

decreasing the range too much i.e., the r-factor could improve the results. 

5.2. Water Balance Components 

It was found that the ratio between ETa and precipitation was 0.68 as an annual 

average between 2012-2020 with ETa being 922 mm y-1 and precipitation 1361 mm 

y-1. The surface runoff to precipitation ratio was 0.19. In a study by Bastiaanssen & 

Chandrapala (2003) the corresponding values in the Malwathu Oya river basin 

between June 1999-2000 were found to be 1223 mm y-1 of precipitation and 1290 

mm y-1 of ETa giving a ratio of 1.05. The surface runoff to precipitation ratio was 

0.29. Both the ratios in this study are therefore comparatively low, especially the 

ETa to precipitation ratio. Since the precipitation values are quite similar it means 

that the partitioning between the water balance components is very different and, 

in this study, more of the water is being recharged to the shallow and deep aquifers 
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that is not taking part in any ET processes. And since the ETa to precipitation ratio 

was >1 in Bastiaanssen & Chandrapala (2003) it also means that water probably 

was evapotranspired by plant uptake from shallow groundwater, this does not 

appear to be the case in this study. The study period between June 1999-2000 is 

however a short period of time so the values could differ on a larger timescale. 

5.3. Comparison of SWAT ETa with WaPOR ETa 

SWAT was showing an underprediction compared to WaPOR for most of the 

seasons, especially in the Yala seasons where the difference was 200-300 mm per 

season for some seasons. SWAT’s behaviour follows the precipitation pattern, in 

the Maha seasons when the rainfall is a lot higher than in the Yala seasons SWAT 

also shows more similar values compared to WaPOR. The reasons for why SWAT 

is unable to simulate higher ETa during low rainfall periods is obviously due to lack 

of water in the model. This is shown by the amount of water stress days for 

especially the FRSD HRUs in Table 15. Some explanations for this is that the 

SWAT model is not representing the water that the vegetation is absorbing from 

the shallow aquifers which prevents water stress during dry periods. Bastiaanssen 

& Chandrapala (2003) stated that the forest in the dry zone stands in a seepage zone 

and is probably extracting water directly from the shallow aquifer and is thus not 

greatly water stressed during dry periods. This would probably account for a big 

part of the missing ETa in the Yala seasons, especially since the forest cover is 63.7 

% of the river basin area. By not using the default parameters for deciduous forest 

in the model and instead using measured forest parameters would allow the model 

to represent the real conditions better.  

 

A further reason for the underestimation by SWAT is the dormancy period that 

SWAT by default makes the plant enter if a certain day light threshold is reached. 

This occurred for 10 days for the RNGE and FRSD HRUs. The period isn’t that 

long but the plants in these HRUs lost 0.30 of their above ground biomasses during 

this period. This would mean a noticeable loss of transpiration before the plants 

have regrown the lost biomass. The dormancy occurred at the end of the year 

between days 352-361 so this would affect the ETa during the Maha seasons. Since 

there is no natural dormancy in the climate of Sri Lanka it is not representing the 

system accurately. The reason for the default dormancy period is because SWAT 

originally was developed for temperate climates. Efforts have been made to adjust 

the SWAT model to better represent perennial plants in tropical climates that do not 

undergo dormancy. Strauch & Volk (2013) developed a plant growth modification 

to address this issue and Arroio Júnior (2017) overcame this problem by making 

changes in the source code, methods that due to time constraint could not be tested 

in this study. Another limitation with the plants is that only the RICE land use was 
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improved with measured values, the RNGE and FRSD land use classes were only 

using the default values from the SWAT database. A better representation of these 

land use classes could therefore also affect the amount of water that is taken up by 

the plants and the ETa. 

 

The SWAT model was calibrated against observed discharge data and as mentioned 

in the discussion on the calibration the parameters that are sensitive to streamflow 

differ to the ones that are sensitive to ETa (Sirisena et al. 2020; Odusanya et al. 

2021). These studies also showed that the SWAT models that were calibrated with 

discharge performed satisfactorily at simulating streamflow but not ETa, and the 

model calibrated with ETa performed satisfactorily when simulating ETa but not 

discharge. Hence, a calibration with ETa would probably improve the performance 

of the model in this case. 

 

Another limitation with the SWAT model is the input data. The rainfall data that 

was used had gaps of <10 % which were accounted for with linear regression gap 

filling. The uncertainty in this data makes the ETa prediction less reliant. As could 

be seen in the hydrograph during calibration a couple of delays in the peak rainfall 

events and one extra peak of rainfall were observed, signs that the rainfall is not 

always representing the system accurately. Moreover, the soil map that was used 

was of very coarse resolution and the field measurements were only conducted in 

one small area of one of the soil classes. To improve the model further field data 

measurements would have to be taken in a greater area extent and by using a soil 

map with higher resolution since the soil input data are of high importance when 

modelling the land-surface hydrology as it determines the flow of water both on 

land and in the ground. 

 

To find out whether SWAT or WaPOR represents the ETa in the river basin better 

it can be compared with other studies that have analysed the water balance in Sri 

Lanka and specifically in the dry zone. From the Figures 10 and 11 the ETa of both 

methods is compared to the precipitation and the ETp. The ratios between ETa and 

precipitation and the difference between ETa and ETp are what can be analysed to 

determine this. In the study by Bastiaanssen & Chandrapala (2003) where a water 

balance analysis on a national scale in Sri Lanka was performed it was found that 

the dry monsoon forest (which is comparable to the forest in this study) was having 

an ETa of 1407 mm y-1 between June 1999 – 2000 with a precipitation of 1345 mm 

y-1, hence a deficit of 62 mm. And for the paddy areas, although accounted for all 

paddy fields in the whole country had an ETa of 1226 mm y-1 with 1665 mm y-1 

precipitation during the same time period, that is a surplus of 439 mm. In this study 

the rainfall was on average 1361 mm y-1 between 2010-2020 and the FRSD HRUs 

had an average ETa of 925 mm y-1 and the RICE HRUs 1192 mm y-1.  WaPOR had 
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for the whole basin an estimated annual average of 1368 mm y-1 so in comparison 

to Bastiaanssen & Chandrapala (2003) the SWAT RICE HRUs are performing well 

but the FRSD HRUs are highly underestimated. WaPOR has an average ETa value 

that corresponds quite well to both the land uses.  

 

Furthermore, Bastiaanssen & Chandrapala (2003) showed that roughly half of the 

Malwathu Oya river basin had a water deficit, i.e., (precipitation – ETa < 0), of 0 – 

500 mm, and a smaller area being 500 – 1000 mm, for the period June 1999 – 2000, 

for the most part in the downstream area, while the upstream half of the basin had 

a surplus of 0 – 500 mm. The deficit was explained by that the perennial vegetation 

in those areas is tapping the shallow aquifers directly or indirectly through capillary 

rise (Bastiaanssen & Chandrapala 2003). Thus, in comparison to that WaPOR is 

with a deficit of (1361 mm y-1 precipitation – 1368 mm y-1 ETa = -7 mm y-1) 

representing the average quite well while SWAT’s average ETa for the whole basin 

is 930 mm y-1, giving a surplus of (1361 mm y-1 precipitation – 930 mm y-1 ETa = 

430 mm y-1), thus in the upper range compared to Bastiaanssen & Chandrapala 

(2003). The study period in Bastiaanssen & Chandrapala (2003) is however a very 

short period for a hydrological assessment so the comparisons may not be valid on 

a longer time scale. Moreover, WaPOR has also got uncertainties, one of them 

being the occurrence of cloud cover which is frequent in the monsoonal climate of 

Sri Lanka. This leads to lower quality NDVI data as gap filling is done (FAO 

2020a), thus leading to less secure ETa estimates. WaPOR has previously been 

known to overestimate ETa (although in Africa) and especially in dry and hot water 

stressed conditions and in irrigated fields (Blatchford et al. 2020; FAO 2020b). This 

can be an explanation for the high values compared to SWAT in this study. More 

information of WaPOR’s performance in Sri Lanka is however needed to conclude 

whether SWAT or WaPOR is the better option for estimating ETa in the Malwathu 

Oya river basin. 
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The SWAT model was used in this study to assess the water balance in the 

Malwathu Oya river basin, Sri Lanka, and showed that ETa was 68 % of the 

precipitation as an annual average between 2012-2020. The model was calibrated 

with a satisfactory result against streamflow and the three most sensitive parameters 

were CN2, SOL_AWC, and ESCO. The SWAT ETa was compared to the RS 

derived ETa from WaPOR. The results showed that SWAT underestimated ETa 

compared to WaPOR during both growing seasons, although particularly in the 

Yala season which receives less rainfall. However, the SWAT HRUs with the auto-

irrigated rice agreed well with WaPOR for several years while the forest and range-

grass HRUs were underpredicted. The lack of ETa in the SWAT model was 

explained by insufficient representation of water being extracted from the shallow 

aquifer by the plants, a dormancy period, and calibration against streamflow instead 

of ETa. To improve the performance of the SWAT model in simulating ETa the 

following recommendations are given: 

 

 

• Improvement and validation of groundwater processes such as the 

simulation of shallow aquifers. These play a vital role in the Malwathu Oya 

river basin since the forest is extracting a lot of this water, particularly in 

the drier Yala season. More accurate forest parameters are therefore needed 

to simulate this. 

 

 

• Using methods to cope with the default dormancy period in SWAT which 

is not naturally occurring in the tropics. Previous studies have shown ways 

to achieve this (Strauch & Volk 2013; Arroio Júnior 2017). 

 

 

• Streamflow calibration to estimate ETa in SWAT has previously been tested 

and has not been optimal (Sirisena et al. 2020; Odusanya et al. 2021). 

Instead, calibration should be performed with ETa considering the different 

sensitivities of the parameters driving the two processes. 

 

 

• Implementation of a higher resolution soil map along with more soil 

measurements in the river basin. 

6. Conclusions 
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Determination of Bulk Density 

The bulk density was determined with the undisturbed core sample method. First, 

the metal cores that were used were weighed and the diameter and height were 

determined (Table A1), then they were inserted in a core sampler. The core sampler 

was hammered into the ground to a depth of 30 cm for all six samples and then 

withdrawn from the soil carefully. The samples were then taken to the laboratory 

where they were oven dried for 48 hours at 105 °C. After the drying the core 

samples were weighed again to obtain the dry soil weight. The bulk density was 

then calculated by dividing the dry soil weight by the core volume in g/cm3. 

 

Table A1: Dimensions of the metal cores used for the determination of bulk density. 

Height (cm) Diameter (cm) Volume (cm3) 

5.1 4.7 88.5 

5 4.7 86.7 

5 4.7 86.7 

5.1 4.6 84.8 

5 4.6 83.1 

5 4.6 83.1 

 

Determination of Soil Texture 

The soil texture or the composition of sand, silt, and clay was determined using the 

simplified hydrometer method. The soils were sampled using an auger and taken at 

30 cm depth. Thereafter, the six samples were air-dried for 24 hours. After drying, 

40 g of each sample was added into a 600 ml beaker with 100 ml of Calgon solution 

(a mix of sodium carbonate and sodium hexametaphosphate (Kaur & Fanourakis 

2018)) and 300 ml distilled water and was left to soak overnight. 

 

To determine the oven-dried weight, 10 g of each soil sample was taken and then 

oven-dried for about 10 hours at 105°C and then weighed to determine the moisture 

content in each sample. The moisture content was then used to calculate the dry 

weight of the 40 g soil that was used for each measurement, this was denoted as W.  

 

When the Calgon solution of each sample had soaked overnight they were 

transferred to a cylinder and distilled water was used to fill the level up to the 1-

liter mark. Thereafter the opening of the cylinder was covered with a plastic sheet 

fixed with a rubber band and then the solution was mixed by turning the cylinder 

Appendix A. Determination of Soil Parameters 
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upside down 20 times. The time was noted when the mixing was finished and then 

a hydrometer was placed in the cylinder after 40 seconds (R40s) and after 2 hours 

(R2h). The temperature in °C was also noted for each hydrometer reading. A blank 

sample was also prepared with 100 ml of Calgon solution filled up with distilled 

water to the 1-liter mark. The blank sample was then mixed using the same method 

and afterwards the hydrometer reading (RL) and temperature were noted.  

 

Each hydrometer reading was then corrected by adding a value of 0.36 x (C – 19.4) 

where C is the temperature in °C. The soil texture was then determined by using 

Equations (A1, A2, A3). 

 𝑆𝑎𝑛𝑑 % = 100 − (𝑅40𝑠 − 𝑅𝐿)  ×
100

𝑊
 (A1) 

 

 𝐶𝑙𝑎𝑦 % = (𝑅2ℎ − 𝑅𝐿)  ×
100

𝑊
 (A2) 

 

 𝑆𝑖𝑙𝑡 % = 100 − (𝑠𝑎𝑛𝑑 % + 𝑐𝑙𝑎𝑦 %) (A3) 

 

The mean soil texture was calculated for all six samples and the textural class was 

determined with the USDA textural triangle. The permanent wilting point (PWP) 

and field capacity (FC) were determined with the program “Soil Water 

Characteristics” from USDA2 based on the mean texture. The available water 

capacity (AWC) was derived by Equation A4. 

 

 𝐴𝑊𝐶 = 𝐹𝐶 − 𝑃𝑊𝑃 (A4) 

 

Determination of Saturated Hydraulic Conductivity 

The soil saturated hydraulic conductivity (Ks) was in this study determined by 

measuring the infiltration rate with a double ring infiltrometer since the constant 

infiltration rate is roughly equal to Ks (Eijkelkamp 2018). The double-ring 

infiltrometer measurement was conducted at one site shown in Figure 4. The soil at 

the site was undisturbed with some grass on the surface and was located next to 

some paddy fields. 

 

A double ring infiltrometer consists of two metal cylinders (in this study with ~30 

cm and ~55 cm diameter) which were driven 5 cm into the ground with a hammer 

and then filled with water at the same level in both cylinders. The outer ring acts as 

a buffer to reduce lateral flow in the soil profile, thus promoting vertical flow 

underneath the inner ring (ASTM 2009). The change in the water level was 

measured with a floating device in the inner ring and the water was refilled in both 

 
2 https://www.ars.usda.gov/research/software/download/?softwareid=492&modecode=80-42-05-10 
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rings every 5 minutes to keep the water level at a constant height. The time was 

noted for every decrease of 5 mm and when a constant infiltration rate was achieved 

the measurements were ended and Ks could be determined in mm/h. 

 

Measurement of Harvest Index 

First, a quadratic metal frame with an area of 0.25 m2 was placed out in the paddy 

field and all the plants that were inside the frame were collected, including the roots. 

This was done at three different paddy fields; their locations are shown in Figure 4. 

The grains were then separated from the plants for each sample and placed in a 

container. Next, the moisture content of the grains was measured with a moisture 

meter giving the moisture content in percent, thereafter the grains were dried at 

room temperature for 48 hours. After the grains had dried the moisture content was 

measured again. The plant materials and the roots were cut into smaller pieces and 

placed in a paper bag and were let to oven dry at 60 °C for 48 hours.  

 

The plant materials were weighed after the 48-hour drying and then dried again 

with 1-hour weighing intervals until the weight was constant (0 % moisture 

content), this took 2 hours, this was done by students at the Rajarata University. 

 

The HI was calculated as the ratio of grain yield mass at 14 % moisture content to 

the total biomass weight. The grain yield at 14 % was first calculated using 

Equations A5 and A6, and then HI was calculated using Equation A7. 

 

 𝑚0 = 𝑚𝑥 − (𝑚𝑥 ×
𝑥

100
 ) (A5) 

 

 𝑚14 = 𝑚0 ×
114

100
 (A6) 

 

 𝐻𝐼 =
𝑚14

𝑚14 + 𝑚𝑝𝑙𝑎𝑛𝑡
 (A7) 

 

Where m0 is the grain mass at 0 % moisture content, mx is the mass of the grains at 

x % moisture content after drying, m14 is the mass of the grains at 14 % moisture 

content, and mplant is the mass of the dried plant materials at 0 % moisture content. 
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In Table B1 are the crop parameters defined for rice in the SWAT crop database. 

Only the maximum rooting depth and harvest index were changed. 

Table B1: Crop parameters for rice used in the SWAT model. All values except RDMX (maximum 

rooting depth) and HVSTI (harvest index) (that were measured) are from the crop database in SWAT 

(Arnold et al. 2012). 

Description Parameter Value Unit Source 

Land cover/plant 

classification 

IDC Warm 

season 

annual 

- 

 

(Arnold et 

al. 2012) 

Radiation-use 

efficiency 

BIO_E 22 (kg/ha)/(MJ/m2) (Arnold et 

al. 2012) 

Harvest index for 

optimal growing 

conditions 

HVSTI 0.324 (kg/ha)/(kg/ha) Measured 

Lower limit of 

harvest index 

WSYF 0.25 (kg/ha)/(kg/ha) (Arnold et 

al. 2012) 

Maximum potential 

leaf area index (LAI) 

and two fractions of 

the max. LAI on the 

leaf area 

development curve. 

BLAI 

FRGRW1 

LAIMX1 

FRGRW2 

LAIMX2 

5 

0.3 

0.01 

0.7 

0.95 

- 

- 

- 

- 

- 

 

(Arnold et 

al. 2012) 

Fraction of the 

growing season when 

LAI begins to 

decline. 

DLAI 0.8 - (Arnold et 

al. 2012) 

Max. canopy height CHTMX 0.8 Meter (Arnold et 

al. 2012) 

Max. rooting depth RDMX 0.11 Meter Measured 

Optimal temperature 

for plant growth 

T_OPT 25 °C (Arnold et 

al. 2012) 

Minimum 

temperature for plant 

growth 

T_BASE 10 °C (Arnold et 

al. 2012) 

Normal fraction of N 

in yield 

CNYLD 0.0136 kg N/kg seed (Arnold et 

al. 2012) 
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Normal fraction of P 

in yield 

CPYLD 0.0013 kg P/kg seed (Arnold et 

al. 2012) 

Fraction of N and P in 

the plant at 

emergence, middle of 

the season, and at 

maturity. 

PLTNFR1 

PLTNFR2 

PLTNFR3 

PLTPFR1 

PLTPFR2 

PLTPFR3 

0.05 

0.02 

0.01 

0.006 

0.003 

0.0018 

Kg N/kg 

biomass 

& 

Kg P/kg 

biomass 

(Arnold et 

al. 2012) 

Minimum of value 

the USLE C factor, 

quantifying the max. 

decrease possible in 

erosion for the plant. 

USLE_C 0.03 - (Arnold et 

al. 2012) 

Maximum stomatal 

conductance 

GSI 0.008 m/s (Arnold et 

al. 2012) 

Rate of decline in 

radiation -use 

efficiency (RUE) per 

unit increase in vapor 

pressure deficit 

WAVP 5 (kg/ha)/(MJ/m2) (Arnold et 

al. 2012) 

Impact of elevated 

CO2 concentration 

on RUE 

CO2HI 660 µLCO2/L air (Arnold et 

al. 2012) 

Biomass-energy 

ration corresponding 

to the 2nd point on the 

RUE curve 

BIOEHI 31 - (Arnold et 

al. 2012) 

Plant residue 

decomposition 

coefficient 

RSDCO_PL 0.05 - (Arnold et 

al. 2012) 

Biomass die-off 

fraction 

BM_DIEOFF 0.1 -  

(Arnold 

et al. 2012) 

Fraction of maximum 

stomatal conductance 

FRGMAX 0.75 - (Arnold et 

al. 2012) 

Vapor pressure 

deficit corresponding 

to FRGMAX 

VPDFR 4 kPa (Arnold et 

al. 2012) 

Light extinction 

coefficient 

EXT_COEFF 0.35 - (Arnold et 

al. 2012) 
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Table C1: Monthly average discharge data from January 2012 - September 2020 used in the SWAT-

CUP calibration. The data is in the input-format for SWAT-CUP. Data for three months is missing. 

Number of 

data point 

Flow_month_year Discharge 

(m3/s) 

1 FLOW_OUT_1_2012 11.15 

2 FLOW_OUT_2_2012 12.79 

3 FLOW_OUT_3_2012 6.39 

4 FLOW_OUT_4_2012 7.61 

5 FLOW_OUT_5_2012 5.42 

6 FLOW_OUT_6_2012 2.65 

7 FLOW_OUT_7_2012 1.73 

8 FLOW_OUT_8_2012 2.08 

9 FLOW_OUT_9_2012 0.79 

10 FLOW_OUT_10_2012 23.79 

11 FLOW_OUT_11_2012 30.45 

13 FLOW_OUT_1_2013 163.76 

14 FLOW_OUT_2_2013 27.66 

15 FLOW_OUT_3_2013 19.96 

16 FLOW_OUT_4_2013 10.68 

17 FLOW_OUT_5_2013 9.58 

18 FLOW_OUT_6_2013 4.5 

19 FLOW_OUT_7_2013 4.58 

20 FLOW_OUT_8_2013 2.32 

21 FLOW_OUT_9_2013 1.23 

22 FLOW_OUT_10_2013 2.28 

23 FLOW_OUT_11_2013 7.73 

24 FLOW_OUT_12_2013 5.13 

25 FLOW_OUT_1_2014 15.04 

26 FLOW_OUT_2_2014 3.72 

27 FLOW_OUT_3_2014 1.13 

29 FLOW_OUT_5_2014 13.74 

30 FLOW_OUT_6_2014 1.61 

31 FLOW_OUT_7_2014 0.94 

32 FLOW_OUT_8_2014 1.33 

33 FLOW_OUT_9_2014 4.64 

34 FLOW_OUT_10_2014 14.48 

35 FLOW_OUT_11_2014 73.01 

37 FLOW_OUT_1_2015 17.95 

38 FLOW_OUT_2_2015 11.06 

39 FLOW_OUT_3_2015 7.72 

40 FLOW_OUT_4_2015 18.16 

41 FLOW_OUT_5_2015 46.26 

42 FLOW_OUT_6_2015 4.98 

43 FLOW_OUT_7_2015 4.34 

44 FLOW_OUT_8_2015 6.15 

45 FLOW_OUT_9_2015 2.99 

46 FLOW_OUT_10_2015 20.04 

47 FLOW_OUT_11_2015 283.26 
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48 FLOW_OUT_12_2015 151.83 

49 FLOW_OUT_1_2016 42.49 

50 FLOW_OUT_2_2016 10.77 

51 FLOW_OUT_3_2016 3.52 

52 FLOW_OUT_4_2016 5.92 

53 FLOW_OUT_5_2016 102.3 

54 FLOW_OUT_6_2016 9.63 

55 FLOW_OUT_7_2016 5.98 

56 FLOW_OUT_8_2016 4.73 

57 FLOW_OUT_9_2016 1.72 

58 FLOW_OUT_10_2016 0.83 

59 FLOW_OUT_11_2016 7.22 

60 FLOW_OUT_12_2016 3.9 

61 FLOW_OUT_1_2017 4.99 

62 FLOW_OUT_2_2017 3.03 

63 FLOW_OUT_3_2017 5.79 

64 FLOW_OUT_4_2017 2.25 

65 FLOW_OUT_5_2017 3.69 

66 FLOW_OUT_6_2017 1.26 

67 FLOW_OUT_7_2017 0.75 

68 FLOW_OUT_8_2017 1.8 

69 FLOW_OUT_9_2017 4.15 

70 FLOW_OUT_10_2017 3.5 

71 FLOW_OUT_11_2017 15.65 

72 FLOW_OUT_12_2017 6.26 

73 FLOW_OUT_1_2018 3.78 

74 FLOW_OUT_2_2018 3.01 

75 FLOW_OUT_3_2018 2.98 

76 FLOW_OUT_4_2018 3.12 

77 FLOW_OUT_5_2018 12.59 

78 FLOW_OUT_6_2018 3.9 

79 FLOW_OUT_7_2018 2.41 

80 FLOW_OUT_8_2018 2.6 

81 FLOW_OUT_9_2018 2.75 

82 FLOW_OUT_10_2018 32.3 

83 FLOW_OUT_11_2018 88.11 

84 FLOW_OUT_12_2018 22.6 

85 FLOW_OUT_1_2019 9.77 

86 FLOW_OUT_2_2019 10.93 

87 FLOW_OUT_3_2019 2.62 

88 FLOW_OUT_4_2019 4.98 

89 FLOW_OUT_5_2019 6.88 

90 FLOW_OUT_6_2019 2.61 

91 FLOW_OUT_7_2019 2.81 

92 FLOW_OUT_8_2019 3.24 

93 FLOW_OUT_9_2019 1.58 

94 FLOW_OUT_10_2019 17.32 

95 FLOW_OUT_11_2019 13.19 

96 FLOW_OUT_12_2019 198.37 

97 FLOW_OUT_1_2020 10.9 

98 FLOW_OUT_2_2020 7.65 

99 FLOW_OUT_3_2020 3.57 

100 FLOW_OUT_4_2020 4.29 

101 FLOW_OUT_5_2020 12.56 
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102 FLOW_OUT_6_2020 4.14 

103 FLOW_OUT_7_2020 6.82 

104 FLOW_OUT_8_2020 2.61 

105 FLOW_OUT_9_2020 2.05 

 

 

Input parameter Description (Arnold et al. 2012) 
 

Min Max 

r__CN2.mgt Initial SCS runoff curve number for moisture 

condition II 

 -0.2 0.2 

v__GW_DELAY.gw Groundwater delay time (days)  30.0 450.0 

v__ALPHA_BF.gw Baseflow alpha factor (1/days)  0 1 

v__GWQMN.gw Threshold depth of water in the shallow aquifer 

required for return flow to occur (mm H2O) 

 0 5000 

v__GW_REVAP.gw Groundwater “revap” coefficient  0.02 0.2 

v__REVAPMN.gw Threshold depth of water in the shallow aquifer for 

“revap” or percolation to the deep aquifer to occur 

(mm H2O) 

 0 500 

r__SOL_AWC(1).sol Available water capacity of the soil layer (1) (mm 

H2O/mm soil) 

 -0.1 1 

v__ESCO.hru Soil evaporation compensation factor  0 1 

v__CH_N2.rte Manning’s “n” value for the main channel  0 0.3 

v__CH_K2.rte Effective hydraulic conductivity in main channel 

alluvium (mm/hr) 

 0 127 

v__ALPHA_BNK.rte Baseflow alpha factor for bank storage (days)  0 1 

r__SOL_K(1).sol Saturated hydraulic conductivity layer (1) (mm/hr)  -0.99 2 

r__SOL_BD(1).sol Moist bulk density layer (1) (g/cm3)  -0.25 0.25 

r__EPCO.bsn Plant uptake compensation factor  -0.99 1 

r__HRU_SLP.hru Average slope steepness (m/m)  -0.99 1 

r__OV_N.hru Manning’s “n” value for overland flow  -0.99 1 

r__SLSUBBSN.hru Average slope length (m)  -0.99 1 

v__SURLAG.bsn Surface runoff lag coefficient  0.05 24 

 

 

 

 

 

 

 

Table C2: SWAT parameters used in the sensitivity analysis and their initial ranges in SWAT-

CUP. The r before the parameter means a relative change was applied by multiplying the existing 

value by (1 + calibrated value). The v before the parameter means that the existing value was 

replaced by the calibrated value. 
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Table C3: SWAT parameters used in the calibration and their final calibrated values. 

Input parameter Final calibrated value 

r__CN2.mgt -0.076 

v__GW_REVAP.gw 0.108 

r__SOL_AWC(1).sol 0.938 

v__ESCO.hru 0.170 

v__CH_K2.rte 66.964 

v__ALPHA_BNK.rte 0.191 

r__HRU_SLP.hru -0.020 

 


